Stochastic nonlinear gravity waves

1987 ◽  
Vol 184 ◽  
pp. 267-288 ◽  
Author(s):  
Douglas G. Dommermuth ◽  
Dick K. P. Yue

We develop a robust numerical method for modelling nonlinear gravity waves which is based on the Zakharov equation/mode-coupling idea but is generalized to include interactions up to an arbitrary order M in wave steepness. A large number (N = O(1000)) of free wave modes are typically used whose amplitude evolutions are determined through a pseudospectral treatment of the nonlinear free-surface conditions. The computational effort is directly proportional to N and M, and the convergence with N and M is exponentially fast for waves up to approximately 80% of Stokes limiting steepness (ka ∼ 0.35). The efficiency and accuracy of the method is demonstrated by comparisons to fully nonlinear semi-Lagrangian computations (Vinje & Brevig 1981); calculations of long-time evolution of wavetrains using the modified (fourth-order) Zakharov equations (Stiassnie & Shemer 1987); and experimental measurements of a travelling wave packet (Su 1982). As a final example of the usefulness of the method, we consider the nonlinear interactions between two colliding wave envelopes of different carrier frequencies.


Author(s):  
Frédéric Nouguier ◽  
Charles-Antoine Guérin ◽  
Bertrand Chapron

2009 ◽  
Vol 36 (5) ◽  
pp. 324-329 ◽  
Author(s):  
Hsien-Kuo Chang ◽  
Yang-Yi Chen ◽  
Jin-Cheng Liou

Sign in / Sign up

Export Citation Format

Share Document