A high-order spectral method for the study of nonlinear gravity waves

1987 ◽  
Vol 184 ◽  
pp. 267-288 ◽  
Author(s):  
Douglas G. Dommermuth ◽  
Dick K. P. Yue

We develop a robust numerical method for modelling nonlinear gravity waves which is based on the Zakharov equation/mode-coupling idea but is generalized to include interactions up to an arbitrary order M in wave steepness. A large number (N = O(1000)) of free wave modes are typically used whose amplitude evolutions are determined through a pseudospectral treatment of the nonlinear free-surface conditions. The computational effort is directly proportional to N and M, and the convergence with N and M is exponentially fast for waves up to approximately 80% of Stokes limiting steepness (ka ∼ 0.35). The efficiency and accuracy of the method is demonstrated by comparisons to fully nonlinear semi-Lagrangian computations (Vinje & Brevig 1981); calculations of long-time evolution of wavetrains using the modified (fourth-order) Zakharov equations (Stiassnie & Shemer 1987); and experimental measurements of a travelling wave packet (Su 1982). As a final example of the usefulness of the method, we consider the nonlinear interactions between two colliding wave envelopes of different carrier frequencies.

2012 ◽  
Vol 712 ◽  
pp. 646-660 ◽  
Author(s):  
Francesco Fedele ◽  
Denys Dutykh

AbstractDyachenko & Zakharov (J. Expl Theor. Phys. Lett., vol. 93, 2011, pp. 701–705) recently derived a compact form of the well-known Zakharov integro-differential equation for the third-order Hamiltonian dynamics of a potential flow of an incompressible, infinitely deep fluid with a free surface. Special travelling wave solutions of this compact equation are numerically constructed using the Petviashvili method. Their stability properties are also investigated. In particular, unstable travelling waves with wedge-type singularities, namely peakons, are numerically discovered. To gain insight into the properties of these singular solutions, we also consider the academic case of a perturbed version of the compact equation, for which analytical peakons with exponential shape are derived. Finally, by means of an accurate Fourier-type spectral scheme it is found that smooth solitary waves appear to collide elastically, suggesting the integrability of the Zakharov equation.


2002 ◽  
Vol 450 ◽  
pp. 201-205 ◽  
Author(s):  
ELIEZER KIT ◽  
LEV SHEMER

A spatial two-dimensional version of the Zakharov equation describing the evolution of deep-water gravity waves is used to derive two fourth-order evolution equations, for the amplitudes of the surface elevation and of the velocity potential. The scaled form of the equations is presented.


Author(s):  
Frédéric Nouguier ◽  
Charles-Antoine Guérin ◽  
Bertrand Chapron

Sign in / Sign up

Export Citation Format

Share Document