scholarly journals A Two-Grid Alternate Strip-Based Domain Decomposition Strategy in Two-Dimensions

Author(s):  
L. Angela Mihai ◽  
Alan W. Craig
2017 ◽  
Vol 22 (4) ◽  
pp. 1069-1100 ◽  
Author(s):  
Qiya Hu ◽  
Lin Zhao

AbstractIn this paper we are concerned with numerical methods for nonlinear time-dependent problem coupled by electron, ion and photon temperatures in two dimensions, which is called the 2D-3T heat conduction equations. We propose discontinuous Galerkin (DG) methods for the discretization of the equations. For solving the resulting discrete system, we employ two domain decomposition (DD) preconditioners, one of which is associated with the non-overlapping DDM and the other is based on DDM with small overlap. The preconditioners are constructed by dropping the couplings between particles and each preconditioner consists of three preconditioners with smaller matrix size. To gauge the efficiency of the preconditioners, we test two examples and make different settings of parameters. Numerical results show that the proposed preconditioners are very effective to the 2D-3T problem.


2008 ◽  
Vol 46 (4) ◽  
pp. 2153-2168 ◽  
Author(s):  
Clark R. Dohrmann ◽  
Axel Klawonn ◽  
Olof B. Widlund

Author(s):  
K Muralidhar ◽  
A Chatterjee ◽  
B V Nagabhushana Rao

The present work is concerned with the application of the domain decomposition technique for modelling transient flow and heat transfer problems. The solutions obtained within each subdomain are matched at the interfaces using Uzawa's algorithm. This algorithm has been originally developed in the context of steady heat conduction. The objective of the present study is to test and extend the algorithm to a wider class of problems. Examples considered are non-linear heat conduction in one and two dimensions, simulation of oil recovery from porous formations using water injection, movement of a plane thermal front and heat transfer from a cylinder placed in Darcian flow. The suitability of Uzawa's algorithm for interface treatment with up to nine subdomains has been studied. The method is found to converge to the full-domain solution in all cases considered. Besides this, results show that there are additional advantages which include the generation of small matrices and, in certain cases, a marginal reduction in CPU (central processing unit) time, even on sequential machines.


2018 ◽  
Vol 28 (07) ◽  
pp. 1267-1289 ◽  
Author(s):  
Juan G. Calvo

A new extension operator for a virtual coarse space is presented which can be used in domain decomposition methods for nodal elliptic problems in two dimensions. In particular, a two-level overlapping Schwarz algorithm is considered and a bound for the condition number of the preconditioned system is obtained. This bound is independent of discontinuities across the interface. The extension operator saves computational time compared to previous studies where discrete harmonic extensions are required and it is suitable for general polygonal meshes and irregular subdomains. Numerical experiments that verify the result are shown, including some with regular and irregular polygonal elements and with subdomains obtained by a mesh partitioner.


2018 ◽  
Vol 41 ◽  
Author(s):  
Alain Pe-Curto ◽  
Julien A. Deonna ◽  
David Sander
Keyword(s):  

AbstractWe characterize Doris's anti-reflectivist, collaborativist, valuational theory along two dimensions. The first dimension is socialentanglement, according to which cognition, agency, and selves are socially embedded. The second dimension isdisentanglement, the valuational element of the theory that licenses the anchoring of agency and responsibility in distinct actors. We then present an issue for the account: theproblem of bad company.


Author(s):  
R. B. Queenan ◽  
P. K. Davies

Na ß“-alumina (Na1.67Mg67Al10.33O17) is a non-stoichiometric sodium aluminate which exhibits fast ionic conduction of the Na+ ions in two dimensions. The Na+ ions can be exchanged with a variety of mono-, di-, and trivalent cations. The resulting exchanged materials also show high ionic conductivities.Considerable interest in the Na+-Nd3+-ß“-aluminas has been generated as a result of the recent observation of lasing in the pulsed and cw modes. A recent TEM investigation on a 100% exchanged Nd ß“-alumina sample found evidence for the intergrowth of two different structure types. Microdiffraction revealed an ordered phase coexisting with an apparently disordered phase, in which the cations are completely randomized in two dimensions. If an order-disorder transition is present then the cooling rates would be expected to affect the microstructures of these materials which may in turn affect the optical properties. The purpose of this work was to investigate the affect of thermal treatments upon the micro-structural and optical properties of these materials.


Author(s):  
J. Holy ◽  
G. Schatten

One of the classic limitations of light microscopy has been the fact that three dimensional biological events could only be visualized in two dimensions. Recently, this shortcoming has been overcome by combining the technologies of laser scanning confocal microscopy (LSCM) and computer processing of microscopical data by volume rendering methods. We have employed these techniques to examine morphogenetic events characterizing early development of sea urchin embryos. Specifically, the fourth cleavage division was examined because it is at this point that the first morphological signs of cell differentiation appear, manifested in the production of macromeres and micromeres by unequally dividing vegetal blastomeres.The mitotic spindle within vegetal blastomeres undergoing unequal cleavage are highly polarized and develop specialized, flattened asters toward the micromere pole. In order to reconstruct the three-dimensional features of these spindles, both isolated spindles and intact, extracted embryos were fluorescently labeled with antibodies directed against either centrosomes or tubulin.


Sign in / Sign up

Export Citation Format

Share Document