embryonic cells
Recently Published Documents


TOTAL DOCUMENTS

1166
(FIVE YEARS 148)

H-INDEX

73
(FIVE YEARS 6)

Author(s):  
Xiaosu Miao ◽  
Wei Cui

Abstract Female infertility is a heterogeneous disorder with a variety of complex causes, including inflammation and oxidative stress, which are also closely associated with the pathogenesis of Polycystic Ovary Syndrome (PCOS). As a new treatment for PCOS, berberine (BER), a natural compound from Berberis, has been clinically applied recently. However, the mechanisms underlying the association between BER and embryogenesis are still largely unknown. In this study, effects of BER on preimplantation development was evaluated by using both normal and inflammatory culture conditions induced by lipopolysaccharide (LPS) in the mouse. Our data first suggest that BER itself (25 nM) does not affect embryo quality or future developmental potency, moreover, it can effectively alleviate LPS-induced embryonic damage by mitigating apoptosis via ROS−/caspase-3-dependent pathways and by suppressing pro-inflammatory cytokines via inhibition of NF-κB signaling pathway during preimplantation embryo development. In addition, skewed cell lineage specification in inner cell mass (ICM) and primitive endoderm (PE) caused by LPS can also be successfully rescued with BER. In summary, these findings for the first time demonstrate the non-toxicity of low doses of BER and its anti-apoptotic and anti-oxidative properties on embryonic cells during mammalian preimplantation development.


2022 ◽  
Vol 10 (1) ◽  
pp. 01-04
Author(s):  
Pedro Rolando López Rodríguez ◽  
Alberto Benitez Herrera

One of the fundamental dogmas maintained in neuroscience until the last century held that regeneration of the nervous system cannot occur in stages of adult life. However, it has been shown in several species during the postnatal stage and throughout life, that new neurons continue to be generated in some places in the human body. Objectives: The research was: to evaluate ethical and bioethical aspects in patients who were treated with an autologous stem cell implant in chronic spinal cord injuries. Method. An analysis is made of the ethical aspects that accompany the implantation of autologous stem cells in chronic spinal cord injuries. The results are evaluated at the "Enrique Cabrera" Surgical Clinical Teaching Hospital. Results: Ethical dilemmas are expressed and that have, among their relevant principles, the inviolability of human life. In higher animals, stem cells according to their evolutionary state can be embryonic and somatic or adult. Currently there is an extraordinary controversy about which stem cells to use from embryonic or adult ones, a debate in which both scientific, ethical, religious, social and political aspects have been included. One aspect of the scientific debate is related to the generative capacity of tumors by embryonic cells. From the ethical point of view, it has been argued that the use of human embryonic stem cells implies the destruction of embryos and it has been considered that life begins at the same moment of the union of the sperm with the ovum and that this would be equivalent to the destruction of a human life which would not be justifiable. Others do not agree with these criteria and argue that their use to save lives through research or therapy would be justified. Conclusions The physical disability produced by a chronic spinal cord injury raises an ethical dilemma about the use of stem cells, anticipating that the main controversy about this action has to do fundamentally with the way in which they are obtained.


2022 ◽  
Author(s):  
Mélanie Pailles ◽  
Mélanie Hirlemann ◽  
Vincent Brochard ◽  
Martine Chebrout ◽  
Jean-François Oudin ◽  
...  

Abstract Early mouse development is characterized by structural and epigenetic changes at the chromatin level while cells progress towards differentiation. At blastocyst stage, the segregation of the three primordial lineages is accompanied by establishment of differential patterns of DNA methylation and post-translational modifications of histones, such as H3K27me3. In this study, we have analysed the dynamics of H3K27me3 at pericentromeric heterochromatin (PCH) during development of the mouse blastocyst, in comparison with cultured embryonic cells. We show that this histone modification is first enriched at PCH in the whole embryo and evolves into a diffuse distribution in epiblast during its specification and maturation. Concomitantly, the level of transcription from major satellite decreases. Stem cells derived from blastocyst (naïve ESCs and TSCs) do not fully maintain the H3K27me3 enrichment at PCH. Moreover, the dynamic of H3K27me3 at PCH during in vitro conversion from naïve to primed pluripotent state and during ESCs derivation suggests that the mechanisms underlying the control of this histone mark at PCH are different in embryo and in vitro. We also conclude that the non-canonical presence of H3K27me3 at PCH is a defining feature of embryonic cells in the young blastocyst before epiblast segregation.


2022 ◽  
Vol 67 (4) ◽  
pp. 376-381
Author(s):  
Milat Ismail Haje ◽  
Nazar P. Shabila

Freezing embryos is the best way to increase fertility for women with ovarian hyper-stimulation syndrome and women at risk for ovarian dysfunction. Due to the importance of freezing and pregnancy embryos, the present study was conducted to compare the fertility rate and the affecting factors following fresh embryos and frozen embryos in women treated with assisted reproductive techniques. In this study, 250 infertile women and IVF/ICSI candidates were studied. Embryos were used in fresh or frozen groups for transfer to the uterus. The expression of the caspase-3 gene was also examined for further evaluation. Data analysis was performed using SPSS 16 software, Chi-square, independent t-test, and Kruskal-Wallis tests. Out of 250 infertile women, 96 (38.4%) became pregnant, of which 54 were in the fresh embryo group and 42 were in the frozen embryo group, which was not statistically significant (P=0.32). Infertility causes, number of embryonic cells and grading of transferred embryos, delivery complications, embryo implantation methods, number of produced embryos after delivery, and endometrial thickness were not significantly different between the two groups (P=0.53). The difference between the mean number of transferred embryos in the two groups was significant (P<0.05), which was no longer significant after excluding non-pregnant women, and in comparing with only pregnant women (P=0.36). The result of caspase-3 gene expression showed that there was significant differences between fresh embryos, healthy thawed frozen embryos, and destroyed thawed frozen embryos. But these results were totally different from the results of the Pregnancy rate section. Therefore, it is inferred that although caspase-3 genes are expressed in frozen embryos after thawing and are ready to destroy the embryo, there are probably a number of involved factors that prevent the activity of caspase-3 and do not allow the apoptotic process to occur. What these factors are and how they prevent this process needs further study.


Development ◽  
2021 ◽  
Author(s):  
Esther Jeong Yoon Kim ◽  
Lydia Sorokin ◽  
Takashi Hiiragi

Development entails patterned emergence of diverse cell types within the embryo. In mammals, cells positioned inside the embryo give rise to the inner cell mass (ICM) that eventually forms the embryo proper. Yet the molecular basis of how these cells recognise their ‘inside’ position to instruct their fate is unknown. Here we show that provision of extracellular matrix (ECM) to isolated embryonic cells induces ICM specification and alters subsequent spatial arrangement between epiblast (EPI) and primitive endoderm (PrE) cells that emerge within the ICM. Notably, this effect is dependent on integrin β1 activity and involves apical to basal conversion of cell polarity. We demonstrate that ECM-integrin activity is sufficient for ‘inside’ positional signalling and it is required for proper EPI/PrE patterning. Our findings thus highlight the significance of ECM-integrin adhesion in enabling position-sensing by cells to achieve tissue patterning.


2021 ◽  
Vol 22 (23) ◽  
pp. 13097
Author(s):  
Adriana Buskin ◽  
Parmveer Singh ◽  
Oliver Lorenz ◽  
Craig Robson ◽  
Douglas W. Strand ◽  
...  

The prostate is vulnerable to two major age-associated diseases, cancer and benign enlargement, which account for significant morbidity and mortality for men across the globe. Prostate cancer is the most common cancer reported in men, with over 1.2 million new cases diagnosed and 350,000 deaths recorded annually worldwide. Benign prostatic hyperplasia (BPH), characterised by the continuous enlargement of the adult prostate, symptomatically afflicts around 50% of men worldwide. A better understanding of the biological processes underpinning these diseases is needed to generate new treatment approaches. Developmental studies of the prostate have shed some light on the processes essential for prostate organogenesis, with many of these up- or downregulated genes expressions also observed in prostate cancer and/or BPH progression. These insights into human disease have been inferred through comparative biological studies relying primarily on rodent models. However, directly observing mechanisms of human prostate development has been more challenging due to limitations in accessing human foetal material. Induced pluripotent stem cells (iPSCs) could provide a suitable alternative as they can mimic embryonic cells, and iPSC-derived prostate organoids present a significant opportunity to study early human prostate developmental processes. In this review, we discuss the current understanding of prostate development and its relevance to prostate-associated diseases. Additionally, we detail the potential of iPSC-derived prostate organoids for studying human prostate development and disease.


2021 ◽  
Vol 2 ◽  
Author(s):  
Erich Loza Telleria ◽  
Daisy Aline Azevedo-Brito ◽  
Barbora Kykalová ◽  
Bruno Tinoco-Nunes ◽  
André Nóbrega Pitaluga ◽  
...  

Phlebotomine sand flies (Diptera, Psychodidae) belonging to the Lutzomyia genus transmit zoonoses in the New World. Lutzomyia longipalpis is the main vector of Leishmania infantum, which is the causative agent of visceral leishmaniasis in Brazil. To identify key molecular aspects involved in the interaction between vector and pathogens and contribute to developing disease transmission controls, we investigated the sand fly innate immunity mediated by the Janus kinase/signal transducer and activator of transcription (Jak-STAT) pathway in response to L. infantum infection. We used two study models: L. longipalpis LL5 embryonic cells co-cultured with L. infantum and sand fly females artificially infected with the parasite. We used qPCR to follow the L. longipalpis gene expression of molecules involved in the Jak-STAT pathway. Also, we modulated the Jak-STAT mediated immune response to understand its role in Leishmania parasite infection. For that, we used RNAi to silence the pathway regulators, protein inhibitor of activated STATs (PIAS) in LL5 cells, and STAT in adult females. In addition, the pathway suppression effect on parasite development within the vector was assessed by light microscopy in late-phase infection. The silencing of the repressor PIAS in LL5 cells led to a moderate increase in a protein tyrosine phosphatase 61F (PTP61F) expression. It suggests a compensatory regulation between these two repressors. L. infantum co-culture with LL5 cells upregulated repressors PIAS, suppressor of cytokine signaling (SOCS), and PTP61F. It also downmodulated virus-induced RNA-1 (VIR-1), a pathway effector, indicating that the parasite could repress the Jak-STAT pathway in LL5 cells. In Leishmania-infected L. longipalpis females, STAT and the antimicrobial peptide attacin were downregulated on the third day post-infection, suggesting a correlation that favors the parasite survival at the end of blood digestion in the sand fly. The antibiotic treatment of infected females showed that the reduction of gut bacteria had little effect on the Jak-STAT pathway regulation. STAT gene silencing mediated by RNAi reduced the expression of inducible nitric oxide synthase (iNOS) and favored Leishmania growth in sand flies on the first day post-infection. These results indicate that STAT participated in the iNOS regulation with subsequent effect on parasite survival.


Author(s):  
Filomena Mottola ◽  
Marianna Santonastaso ◽  
Concetta Iovine ◽  
Giada Frenzilli ◽  
Simona Picchietti ◽  
...  

2021 ◽  
Author(s):  
Marina A. Diatroptova ◽  
Anna M. Kosyreva ◽  
Mikhail E. Diatroptov

Abstract A study of the 4-day rhythm of the proliferative activity of the embryonic fibroblast-like cells in the logarithmic growth phase was carried out. It was shown that in cell cultures obtained on different days from embryos of different ages, the phase of the 4-day rhythm coincides. In vitro the maxima of the proliferative activity were consistent with the minima of the motor activity of mice. Freezing the culture for 2 or 6 days does not cause a shift in the phase of the 4-day rhythm of cell proliferative activity compare with the unfreezing culture. That indicates the existence of an external synchronizer, which determines the 4-day infradian rhythm of the proliferative activity of embryonic cells. Then we daily thawed samples of single L-929 culture of mice fibroblast-like cells for 22 and 17 days and researched the dynamics of its proliferative activity. We also showed 4-day rhythm of the simultaneous increase in the number of cells for all thawed samples. Taking into account that deep freezing of a culture leads to the cessation of all life processes, the fact we obtained indicates an exogenous mechanism of the formation of about a 4-day rhythm of the proliferative activity of cell culture.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3111
Author(s):  
Po-Yu Lin ◽  
Denny Yang ◽  
Chi-Hsuan Chuang ◽  
Hsuan Lin ◽  
Wei-Ju Chen ◽  
...  

The developmental potential within pluripotent cells in the canonical model is restricted to embryonic tissues, whereas totipotent cells can differentiate into both embryonic and extraembryonic tissues. Currently, the ability to culture in vitro totipotent cells possessing molecular and functional features like those of an early embryo in vivo has been a challenge. Recently, it was reported that treatment with a single spliceosome inhibitor, pladienolide B (plaB), can successfully reprogram mouse pluripotent stem cells into totipotent blastomere-like cells (TBLCs) in vitro. The TBLCs exhibited totipotency transcriptionally and acquired expanded developmental potential with the ability to yield various embryonic and extraembryonic tissues that may be employed as novel mouse developmental cell models. However, it is disputed whether TBLCs are ‘true’ totipotent stem cells equivalent to in vivo two-cell stage embryos. To address this question, single-cell RNA sequencing was applied to TBLCs and cells from early mouse embryonic developmental stages and the data were integrated using canonical correlation analyses. Differential expression analyses were performed between TBLCs and multi-embryonic cell stages to identify differentially expressed genes. Remarkably, a subpopulation within the TBLCs population expressed a high level of the totipotent-related genes Zscan4s and displayed transcriptomic features similar to mouse two-cell stage embryonic cells. This study underscores the subtle differences between in vitro derived TBLCs and in vivo mouse early developmental cell stages at the single-cell transcriptomic level. Our study has identified a new experimental model for stem cell biology, namely ‘cluster 3’, as a subpopulation of TBLCs that can be molecularly defined as near totipotent cells.


Sign in / Sign up

Export Citation Format

Share Document