Visual Odometry Using Sparse Bundle Adjustment on an Autonomous Outdoor Vehicle

Author(s):  
Niko Sünderhauf ◽  
Kurt Konolige ◽  
Simon Lacroix ◽  
Peter Protzel
Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3949 ◽  
Author(s):  
Wei Li ◽  
Mingli Dong ◽  
Naiguang Lu ◽  
Xiaoping Lou ◽  
Peng Sun

An extended robot–world and hand–eye calibration method is proposed in this paper to evaluate the transformation relationship between the camera and robot device. This approach could be performed for mobile or medical robotics applications, where precise, expensive, or unsterile calibration objects, or enough movement space, cannot be made available at the work site. Firstly, a mathematical model is established to formulate the robot-gripper-to-camera rigid transformation and robot-base-to-world rigid transformation using the Kronecker product. Subsequently, a sparse bundle adjustment is introduced for the optimization of robot–world and hand–eye calibration, as well as reconstruction results. Finally, a validation experiment including two kinds of real data sets is designed to demonstrate the effectiveness and accuracy of the proposed approach. The translation relative error of rigid transformation is less than 8/10,000 by a Denso robot in a movement range of 1.3 m × 1.3 m × 1.2 m. The distance measurement mean error after three-dimensional reconstruction is 0.13 mm.


2021 ◽  
Author(s):  
Kieran Kneisel

The ability to localize an unmanned vehicle is an essential requirement for extraterrestrial robotic exploration missions. The goal of this thesis is to develop a visual odometry algorithm capable of operating in real-time and in natural unstructured environments. Accuracy, repeatability and computational cost were the primary considerations during the development of the algorithm. The resulting visual odometry algorithm can operate in real-time and provides the foundations for further development. More commonly used approaches for localization include the use of inertial measurement units (IMU) or wheel odometry, which are prone to drift and slippage respectively, making them unreliable for long duration missions. Visual odometry also experiences error accumulation, however, it offers the possibility of mitigating this problem through techniques such as loop closing and bundle adjustment. The performance of the Iterative Closest Point (ICP) algorithm in conjunction within the visual odometer was also evaluated and shown to have improved overall localization performance.


2021 ◽  
Author(s):  
Kieran Kneisel

The ability to localize an unmanned vehicle is an essential requirement for extraterrestrial robotic exploration missions. The goal of this thesis is to develop a visual odometry algorithm capable of operating in real-time and in natural unstructured environments. Accuracy, repeatability and computational cost were the primary considerations during the development of the algorithm. The resulting visual odometry algorithm can operate in real-time and provides the foundations for further development. More commonly used approaches for localization include the use of inertial measurement units (IMU) or wheel odometry, which are prone to drift and slippage respectively, making them unreliable for long duration missions. Visual odometry also experiences error accumulation, however, it offers the possibility of mitigating this problem through techniques such as loop closing and bundle adjustment. The performance of the Iterative Closest Point (ICP) algorithm in conjunction within the visual odometer was also evaluated and shown to have improved overall localization performance.


Author(s):  
Kai Cordes ◽  
Mark Hockner ◽  
Hanno Ackermann ◽  
Bodo Rosenhahn ◽  
Jorn Ostermann

Sign in / Sign up

Export Citation Format

Share Document