scholarly journals Simultaneous Robot–World and Hand–Eye Calibration without a Calibration Object

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3949 ◽  
Author(s):  
Wei Li ◽  
Mingli Dong ◽  
Naiguang Lu ◽  
Xiaoping Lou ◽  
Peng Sun

An extended robot–world and hand–eye calibration method is proposed in this paper to evaluate the transformation relationship between the camera and robot device. This approach could be performed for mobile or medical robotics applications, where precise, expensive, or unsterile calibration objects, or enough movement space, cannot be made available at the work site. Firstly, a mathematical model is established to formulate the robot-gripper-to-camera rigid transformation and robot-base-to-world rigid transformation using the Kronecker product. Subsequently, a sparse bundle adjustment is introduced for the optimization of robot–world and hand–eye calibration, as well as reconstruction results. Finally, a validation experiment including two kinds of real data sets is designed to demonstrate the effectiveness and accuracy of the proposed approach. The translation relative error of rigid transformation is less than 8/10,000 by a Denso robot in a movement range of 1.3 m × 1.3 m × 1.2 m. The distance measurement mean error after three-dimensional reconstruction is 0.13 mm.

Author(s):  
Mark Ellisman ◽  
Maryann Martone ◽  
Gabriel Soto ◽  
Eleizer Masliah ◽  
David Hessler ◽  
...  

Structurally-oriented biologists examine cells, tissues, organelles and macromolecules in order to gain insight into cellular and molecular physiology by relating structure to function. The understanding of these structures can be greatly enhanced by the use of techniques for the visualization and quantitative analysis of three-dimensional structure. Three projects from current research activities will be presented in order to illustrate both the present capabilities of computer aided techniques as well as their limitations and future possibilities.The first project concerns the three-dimensional reconstruction of the neuritic plaques found in the brains of patients with Alzheimer's disease. We have developed a software package “Synu” for investigation of 3D data sets which has been used in conjunction with laser confocal light microscopy to study the structure of the neuritic plaque. Tissue sections of autopsy samples from patients with Alzheimer's disease were double-labeled for tau, a cytoskeletal marker for abnormal neurites, and synaptophysin, a marker of presynaptic terminals.


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Mahendran Shitan ◽  
Shelton Peiris

Spatial modelling has its applications in many fields like geology, agriculture, meteorology, geography, and so forth. In time series a class of models known as Generalised Autoregressive (GAR) has been introduced by Peiris (2003) that includes an index parameterδ. It has been shown that the inclusion of this additional parameter aids in modelling and forecasting many real data sets. This paper studies the properties of a new class of spatial autoregressive process of order 1 with an index. We will call this aGeneralised Separable Spatial Autoregressive(GENSSAR) Model. The spectral density function (SDF), the autocovariance function (ACVF), and the autocorrelation function (ACF) are derived. The theoretical ACF and SDF plots are presented as three-dimensional figures.


1991 ◽  
Vol 12 (1) ◽  
pp. 11-16 ◽  
Author(s):  
W. Wrazidlo ◽  
H.J. Brambs ◽  
W. Lederer ◽  
S. Schneider ◽  
B. Geiger ◽  
...  

Author(s):  
W. Wahbeh ◽  
S. Nebiker

In our paper, we document experiments and results of image-based 3d reconstructions of famous heritage monuments which were recently damaged or completely destroyed by the so-called Islamic state in Syria and Iraq. The specific focus of our research is on the combined use of professional photogrammetric imagery and of publicly available imagery from the web for optimally 3d reconstructing those monuments. The investigated photogrammetric reconstruction techniques include automated bundle adjustment and dense multi-view 3d reconstruction using public domain and professional imagery on the one hand and an interactive polygonal modelling based on projected panoramas on the other. Our investigations show that the combination of these two image-based modelling techniques delivers better results in terms of model completeness, level of detail and appearance.


2020 ◽  
Vol 12 (12) ◽  
pp. 2016 ◽  
Author(s):  
Tao Zhang ◽  
Puzhao Zhang ◽  
Weilin Zhong ◽  
Zhen Yang ◽  
Fan Yang

The traditional local binary pattern (LBP, hereinafter we also call it a two-dimensional local binary pattern 2D-LBP) is unable to depict the spectral characteristics of a hyperspectral image (HSI). To cure this deficiency, this paper develops a joint spectral-spatial 2D-LBP feature (J2D-LBP) by averaging three different 2D-LBP features in a three-dimensional hyperspectral data cube. Subsequently, J2D-LBP is added into the Gabor filter-based deep network (GFDN), and then a novel classification method JL-GFDN is proposed. Different from the original GFDN framework, JL-GFDN further fuses the spectral and spatial features together for HSI classification. Three real data sets are adopted to evaluate the effectiveness of JL-GFDN, and the experimental results verify that (i) JL-GFDN has a better classification accuracy than the original GFDN; (ii) J2D-LBP is more effective in HSI classification in comparison with the traditional 2D-LBP.


Author(s):  
K. Nagara ◽  
T. Fuse

With increasing widespread use of three-dimensional data, the demand for simplified data acquisition is also increasing. The range camera, which is a simplified sensor, can acquire a dense-range image in a single shot; however, its measuring coverage is narrow and its measuring accuracy is limited. The former drawback had be overcome by registering sequential range images. This method, however, assumes that the point cloud is error-free. In this paper, we develop an integration method for sequential range images with error adjustment of the point cloud. The proposed method consists of ICP (Iterative Closest Point) algorithm and self-calibration bundle adjustment. The ICP algorithm is considered an initial specification for the bundle adjustment. By applying the bundle adjustment, coordinates of the point cloud are modified and the camera poses are updated. Through experimentation on real data, the efficiency of the proposed method has been confirmed.


2021 ◽  
Vol 87 (7) ◽  
pp. 479-484
Author(s):  
Yu Hou ◽  
Ruifeng Zhai ◽  
Xueyan Li ◽  
Junfeng Song ◽  
Xuehan Ma ◽  
...  

Three-dimensional reconstruction from a single image has excellent future prospects. The use of neural networks for three-dimensional reconstruction has achieved remarkable results. Most of the current point-cloud-based three-dimensional reconstruction networks are trained using nonreal data sets and do not have good generalizability. Based on the Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago ()data set of large-scale scenes, this article proposes a method for processing real data sets. The data set produced in this work can better train our network model and realize point cloud reconstruction based on a single picture of the real world. Finally, the constructed point cloud data correspond well to the corresponding three-dimensional shapes, and to a certain extent, the disadvantage of the uneven distribution of the point cloud data obtained by light detection and ranging scanning is overcome using the proposed method.


2020 ◽  
Vol 12 (8) ◽  
pp. 1240 ◽  
Author(s):  
Xabier Blanch ◽  
Antonio Abellan ◽  
Marta Guinau

The emerging use of photogrammetric point clouds in three-dimensional (3D) monitoring processes has revealed some constraints with respect to the use of LiDAR point clouds. Oftentimes, point clouds (PC) obtained by time-lapse photogrammetry have lower density and precision, especially when Ground Control Points (GCPs) are not available or the camera system cannot be properly calibrated. This paper presents a new workflow called Point Cloud Stacking (PCStacking) that overcomes these restrictions by making the most of the iterative solutions in both camera position estimation and internal calibration parameters that are obtained during bundle adjustment. The basic principle of the stacking algorithm is straightforward: it computes the median of the Z coordinates of each point for multiple photogrammetric models to give a resulting PC with a greater precision than any of the individual PC. The different models are reconstructed from images taken simultaneously from, at least, five points of view, reducing the systematic errors associated with the photogrammetric reconstruction workflow. The algorithm was tested using both a synthetic point cloud and a real 3D dataset from a rock cliff. The synthetic data were created using mathematical functions that attempt to emulate the photogrammetric models. Real data were obtained by very low-cost photogrammetric systems specially developed for this experiment. Resulting point clouds were improved when applying the algorithm in synthetic and real experiments, e.g., 25th and 75th error percentiles were reduced from 3.2 cm to 1.4 cm in synthetic tests and from 1.5 cm to 0.5 cm in real conditions.


Sign in / Sign up

Export Citation Format

Share Document