scholarly journals Pattern Matching and Neural Networks based Hybrid Forecasting System

Author(s):  
Sameer Singh ◽  
Jonathan Fieldsend
Author(s):  
Bhargavi Munnaluri ◽  
K. Ganesh Reddy

Wind forecasting is one of the best efficient ways to deal with the challenges of wind power generation. Due to the depletion of fossil fuels renewable energy sources plays a major role for the generation of power. For future management and for future utilization of power, we need to predict the wind speed.  In this paper, an efficient hybrid forecasting approach with the combination of Support Vector Machine (SVM) and Artificial Neural Networks(ANN) are proposed to improve the quality of prediction of wind speed. Due to the different parameters of wind, it is difficult to find the accurate prediction value of the wind speed. The proposed hybrid model of forecasting is examined by taking the hourly wind speed of past years data by reducing the prediction error with the help of Mean Square Error by 0.019. The result obtained from the Artificial Neural Networks improves the forecasting quality.


1999 ◽  
Vol 119 (10) ◽  
pp. 1020-1025 ◽  
Author(s):  
Tatsuya Iizaka ◽  
Tetsuro Matsui ◽  
Yoshiteru Ueki

2012 ◽  
Vol 9 (7) ◽  
pp. 8701-8736 ◽  
Author(s):  
D. E. Robertson ◽  
P. Pokhrel ◽  
Q. J. Wang

Abstract. Statistical methods traditionally applied for seasonal streamflow forecasting use predictors that represent the initial catchment condition and future climate influences on future streamflows. Observations of antecedent streamflows or rainfall commonly used to represent the initial catchment conditions are surrogates for the true source of predictability and can potentially have limitations. This study investigates a hybrid seasonal forecasting system that uses the simulations from a dynamic hydrological model as a predictor to represent the initial catchment condition in a statistical seasonal forecasting method. We compare the skill and reliability of forecasts made using the hybrid forecasting approach to those made using the existing operational practice of the Australian Bureau of Meteorology for 21 catchments in eastern Australia. We investigate the reasons for differences. In general, the hybrid forecasting system produces forecasts that are more skilful than the existing operational practice and as reliable. The greatest increases in forecast skill tend to be (1) when the catchment is wetting up but antecedent streamflows have not responded to antecedent rainfall, (2) when the catchment is drying and the dominant source of antecedent streamflow is in transition between surface runoff and base flow, and (3) when the initial catchment condition is near saturation intermittently throughout the historical record.


2008 ◽  
Vol 34 (5) ◽  
pp. 592-598 ◽  
Author(s):  
Atakan Kurt ◽  
Betul Gulbagci ◽  
Ferhat Karaca ◽  
Omar Alagha

Sign in / Sign up

Export Citation Format

Share Document