Mixed Measures and Inhomogeneous Boolean Models

Author(s):  
Wolfgang Weil
Keyword(s):  
Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 600 ◽  
Author(s):  
Marco Montalva-Medel ◽  
Thomas Ledger ◽  
Gonzalo A. Ruz ◽  
Eric Goles

In Veliz-Cuba and Stigler 2011, Boolean models were proposed for the lac operon in Escherichia coli capable of reproducing the operon being OFF, ON and bistable for three (low, medium and high) and two (low and high) parameters, representing the concentration ranges of lactose and glucose, respectively. Of these 6 possible combinations of parameters, 5 produce results that match with the biological experiments of Ozbudak et al., 2004. In the remaining one, the models predict the operon being OFF while biological experiments show a bistable behavior. In this paper, we first explore the robustness of two such models in the sense of how much its attractors change against any deterministic update schedule. We prove mathematically that, in cases where there is no bistability, all the dynamics in both models lack limit cycles while, when bistability appears, one model presents 30% of its dynamics with limit cycles while the other only 23%. Secondly, we propose two alternative improvements consisting of biologically supported modifications; one in which both models match with Ozbudak et al., 2004 in all 6 combinations of parameters and, the other one, where we increase the number of parameters to 9, matching in all these cases with the biological experiments of Ozbudak et al., 2004.


2001 ◽  
Vol 29 (4) ◽  
pp. 1515-1546 ◽  
Author(s):  
Mathew D. Penrose
Keyword(s):  

1996 ◽  
Vol 28 (2) ◽  
pp. 335-335
Author(s):  
Markus Kiderlen

For a stationary point process X of convex particles in ℝd the projected thick section process X(L) on a q-dimensional linear subspace L is considered. Formulae connecting geometric functionals, e.g. the quermass densities of X and X(L), are presented. They generalize the classical results of Miles (1976) and Davy (1976) which hold only in the isotropic case.


1982 ◽  
Vol 19 (1) ◽  
pp. 111-126 ◽  
Author(s):  
Shigeru Mase

We shall discuss asymptotic properties of stereological estimators of volume (area) fraction for stationary random sets (in the sense of Matheron) under natural and general assumptions. Results obtained are strong consistency, asymptotic normality, and asymptotic unbiasedness and consistency of asymptotic variance estimators. The method is analogous to the non-parametric estimation of spectral density functions of stationary time series using window functions. Proofs are given for areal estimators, but they are also valid for lineal and point estimators with slight modifications. Finally we show that stationary Boolean models satisfy the relevant assumptions reasonably well.


2014 ◽  
Vol 55 ◽  
pp. 48-85 ◽  
Author(s):  
Julia Hörrmann ◽  
Daniel Hug ◽  
Michael Andreas Klatt ◽  
Klaus Mecke

2000 ◽  
Vol 32 (03) ◽  
pp. 682-700
Author(s):  
Jeffrey D. Picka

In the statistical analysis of random sets, it is useful to have simple statistics that can be used to describe the realizations of these sets. The cumulants and several other standardized moments such as the correlation and second cumulant can be used for this purpose, but their estimators can be excessively variable if the most straightforward estimation strategy is used. Through exploitation of similarities between this estimation problem and a similar one for a point process statistic, two modifications are proposed. Analytical results concerning the effects of these modifications are found through use of a specialized asymptotic regime. Simulation results establish that the modifications are highly effective at reducing estimator standard deviations for Boolean models. The results suggest that the reductions in variance result from a balanced use of information in the estimation of the first and second moments, through eliminating the use of observations that are not used in second moment estimation.


2001 ◽  
Vol 33 (1) ◽  
pp. 39-60 ◽  
Author(s):  
Wolfgang Weil

In generalization of the well-known formulae for quermass densities of stationary and isotropic Boolean models, we prove corresponding results for densities of mixed volumes in the stationary situation and show how they can be used to determine the intensity of non-isotropic Boolean models Z in d-dimensional space for d = 2, 3, 4. We then consider non-stationary Boolean models and extend results of Fallert on quermass densities to densities of mixed volumes. In particular, we present explicit formulae for a planar inhomogeneous Boolean model with circular grains.


2012 ◽  
Vol 44 (7) ◽  
pp. 805-822 ◽  
Author(s):  
Xavier Emery ◽  
Willy Kracht ◽  
Álvaro Egaña ◽  
Felipe Garrido

Sign in / Sign up

Export Citation Format

Share Document