Real-Time Dispatching of Guided and Unguided Automobile Service Units with Soft Time Windows

Author(s):  
Sven O. Krumke ◽  
Jörg Rambau ◽  
Luis M. Torres
2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Chenghua Shi ◽  
Tonglei Li ◽  
Yu Bai ◽  
Fei Zhao

We present the vehicle routing problem with potential demands and time windows (VRP-PDTW), which is a variation of the classical VRP. A homogenous fleet of vehicles originated in a central depot serves customers with soft time windows and deliveries from/to their locations, and split delivery is considered. Also, besides the initial demand in the order contract, the potential demand caused by conformity consuming behavior is also integrated and modeled in our problem. The objective of minimizing the cost traveled by the vehicles and penalized cost due to violating time windows is then constructed. We propose a heuristics-based parthenogenetic algorithm (HPGA) for successfully solving optimal solutions to the problem, in which heuristics is introduced to generate the initial solution. Computational experiments are reported for instances and the proposed algorithm is compared with genetic algorithm (GA) and heuristics-based genetic algorithm (HGA) from the literature. The comparison results show that our algorithm is quite competitive by considering the quality of solutions and computation time.


2015 ◽  
Vol 74 (1) ◽  
Author(s):  
Muhammad Zaki Mustapa

This paper discusses on attitude control of a quadcopter unmanned aerial vehicle (UAV) in real time application. Newton-Euler equation is used to derive the model of system and the model characteristic is analyzed. The paper describes the controller design method for the hovering control of UAV automatic vertical take-off system. In order to take-off the quadcopter and stable the altitude, PID controller has been designed. The scope of study is to develop an altitude controller of the vertical take-off as realistic as possible. The quadcopter flight system has nonlinear characteristics. A simulation is conducted to test and analyze the control performance of the quadcopter model. The simulation was conducted by using Mat-lab Simulink. On the other hand, for the real time application, the PCI-1711 data acquisition card is used as an interface for controller design which routes from Simulink to hardware. This study showed the controller designs are implemented and tuned to the real system using Real Time Windows Target approach by Mat-Lab Simulink.


2021 ◽  
Vol 15 (4/5) ◽  
pp. 444
Author(s):  
Zhenping Li ◽  
Guohua Wu ◽  
Ke Zhang ◽  
Shuxuan Li ◽  
Chenglin Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document