Double Circulant Self-Dual Codes Using Finite-Field Wavelet Transforms

Author(s):  
F. Fekri ◽  
S. W. McLaughlin ◽  
R. M. Mersereau ◽  
R. W. Schafer
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ram Krishna Verma ◽  
Om Prakash ◽  
Ashutosh Singh ◽  
Habibul Islam

<p style='text-indent:20px;'>For an odd prime <inline-formula><tex-math id="M1">\begin{document}$ p $\end{document}</tex-math></inline-formula> and positive integers <inline-formula><tex-math id="M2">\begin{document}$ m $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ \ell $\end{document}</tex-math></inline-formula>, let <inline-formula><tex-math id="M4">\begin{document}$ \mathbb{F}_{p^m} $\end{document}</tex-math></inline-formula> be the finite field with <inline-formula><tex-math id="M5">\begin{document}$ p^{m} $\end{document}</tex-math></inline-formula> elements and <inline-formula><tex-math id="M6">\begin{document}$ R_{\ell,m} = \mathbb{F}_{p^m}[v_1,v_2,\dots,v_{\ell}]/\langle v^{2}_{i}-1, v_{i}v_{j}-v_{j}v_{i}\rangle_{1\leq i, j\leq \ell} $\end{document}</tex-math></inline-formula>. Thus <inline-formula><tex-math id="M7">\begin{document}$ R_{\ell,m} $\end{document}</tex-math></inline-formula> is a finite commutative non-chain ring of order <inline-formula><tex-math id="M8">\begin{document}$ p^{2^{\ell} m} $\end{document}</tex-math></inline-formula> with characteristic <inline-formula><tex-math id="M9">\begin{document}$ p $\end{document}</tex-math></inline-formula>. In this paper, we aim to construct quantum codes from skew constacyclic codes over <inline-formula><tex-math id="M10">\begin{document}$ R_{\ell,m} $\end{document}</tex-math></inline-formula>. First, we discuss the structures of skew constacyclic codes and determine their Euclidean dual codes. Then a relation between these codes and their Euclidean duals has been obtained. Finally, with the help of a duality-preserving Gray map and the CSS construction, many MDS and better non-binary quantum codes are obtained as compared to the best-known quantum codes available in the literature.</p>


2019 ◽  
Vol 12 (04) ◽  
pp. 1950050
Author(s):  
Saroj Rani

Constacyclic codes form an important class of linear codes which is remarkable generalization of cyclic and negacyclic codes. In this paper, we assume that [Formula: see text] is the finite field of order [Formula: see text] where [Formula: see text] is a power of the prime [Formula: see text] and [Formula: see text] are distinct odd primes, and [Formula: see text] are positive integers. We determine generator polynomials of all constacyclic codes of length [Formula: see text] over the finite field [Formula: see text] We also determine their dual codes.


2020 ◽  
Vol 28 (1) ◽  
pp. 205-217
Author(s):  
Manuel González-Sarabia ◽  
Delio Jaramillo ◽  
Rafael H. Villarreal

AbstractThere is a nice combinatorial formula of P. Beelen and M. Datta for the r-th generalized Hamming weight of an a ne cartesian code. Using this combinatorial formula we give an easy to evaluate formula to compute the r-th generalized Hamming weight for a family of a ne cartesian codes. If 𝕏 is a set of projective points over a finite field we determine the basic parameters and the generalized Hamming weights of the Veronese type codes on 𝕏 and their dual codes in terms of the basic parameters and the generalized Hamming weights of the corresponding projective Reed–Muller-type codes on 𝕏 and their dual codes.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 882
Author(s):  
Whan-Hyuk Choi

The purpose of this paper is to classify and enumerate self-dual codes of length 6 over finite field Z p . First, we classify these codes into three cases: decomposable, indecomposable non-MDS and MDS codes. Then, we complete the classification of non-MDS self-dual codes of length 6 over Z p for all primes p in terms of their automorphism group. We obtain all inequivalent classes and find the necessary and sufficient conditions for the existence of each class. Finally, we obtain the number of MDS self-dual codes of length 6.


2006 ◽  
Vol 54 (3) ◽  
pp. 991-1004 ◽  
Author(s):  
F. Fekri ◽  
S.W. McLaughlin ◽  
R.M. Mersereau ◽  
R.W. Schafer

2014 ◽  
Vol 51 (4) ◽  
pp. 454-465
Author(s):  
Lu-Ming Shen ◽  
Huiping Jing

Let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{F}_q ((X^{ - 1} ))$$ \end{document} denote the formal field of all formal Laurent series x = Σ n=ν∞anX−n in an indeterminate X, with coefficients an lying in a given finite field \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{F}_q$$ \end{document}. For any \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\beta \in \mathbb{F}_q ((X^{ - 1} ))$$ \end{document} with deg β > 1, it is known that for almost all \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$x \in \mathbb{F}_q ((X^{ - 1} ))$$ \end{document} (with respect to the Haar measure), x is β-normal. In this paper, we show the inverse direction, i.e., for any x, for almost all \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\beta \in \mathbb{F}_q ((X^{ - 1} ))$$ \end{document}, x is β-normal.


2007 ◽  
Vol 66 (6) ◽  
pp. 505-512
Author(s):  
A. D. Kukharev ◽  
Yu. S. Evstifeev ◽  
V. G. Yakovlev

Sign in / Sign up

Export Citation Format

Share Document