A decision algorithm for full propositional temporal logic

Author(s):  
Y. Kesten ◽  
Z. Manna ◽  
H. McGuire ◽  
A. Pnueli
2009 ◽  
Vol 19 (1) ◽  
pp. 73-100 ◽  
Author(s):  
CONG TIAN ◽  
ZHENHUA DUAN

This paper investigates the complexity of Propositional Projection Temporal Logic with Star (PPTL*). To this end, Propositional Projection Temporal Logic (PPTL) is first extended to include projection star. Then, by reducing the emptiness problem of star-free expressions to the problem of the satisfiability of PPTL* formulas, the lower bound of the complexity for the satisfiability of PPTL* formulas is proved to be non-elementary. Then, to prove the decidability of PPTL*, the normal form, normal form graph (NFG) and labelled normal form graph (LNFG) for PPTL* are defined. Also, algorithms for transforming a formula to its normal form and LNFG are presented. Finally, a decision algorithm for checking the satisfiability of PPTL* formulas is formalised using LNFGs.


2009 ◽  
Vol 28 (11) ◽  
pp. 2874-2876 ◽  
Author(s):  
Xian-wei LAI ◽  
Shan-li HU ◽  
Zheng-yuan NING ◽  
Xiu-li WANG
Keyword(s):  

Author(s):  
Abubakar Muhammad Miyim ◽  
Mahamod Ismail ◽  
Rosdiadee Nordin

The importance of network selection for wireless networks, is to facilitate users with various personal wireless devices to access their desired services via a range of available radio access networks. The inability of these networks to provide broadband data service applications to users poses a serious challenge in the wireless environment. Network Optimization has therefore become necessary, so as to accommodate the increasing number of users’ service application demands while maintaining the required quality of services. To achieve that, the need to incorporate intelligent and fast mechanism as a solution to select the best value network for the user arises. This paper provides an intelligent network selection strategy based on the user- and network-valued metrics to suit their preferences when communicating in multi-access environment. A user-driven network selection strategy that employs Multi-Access Service Selection Vertical Handover Decision Algorithm (MASS-VHDA) via three interfaces; Wi-Fi, WiMAX and LTE-A is proposed, numerically evaluated and simulated. The results from the performance analysis demonstrate some improvement in the QoS and network blocking probability to satisfy user application requests for multiple simultaneous services.


Sign in / Sign up

Export Citation Format

Share Document