Two lower bounds on computational complexity of infinite words

Author(s):  
Juraj Hromkovič ◽  
Juhani Karhumäki
1976 ◽  
Vol 5 (68) ◽  
Author(s):  
Neil D. Jones ◽  
Steven S. Muchnick

<p>In an earlier paper (JACM, 1976) we studied the computational complexity of a number of questions of both programming and theoretical interest (e.g. halting, looping, equivalence) concerning the behaviour of programs written in an extremely simple programming language. These finite memory programs or fmps model the behaviour of FORTRAN-like programs with a finite memory whose size can be determined by examination of the program itself.</p><p>The present paper is a continuation in which we extend the analysis to include ALGOL-like programs (called fmp^(rec) s) with the finite memory augmented by an implicit pushdown stack used to support recursion.</p><p>Our major results are the following. First, we show that at least deterministic exponential time is required to determine whether a program in the basic fmpr~C model accepts a nonempty set. Then we show that a model with a limited version of call-by-name requires exponential space to determine acceptance of a nonempty set, and that a more sophisticated model with rewritable conditional formal parametershas an undecidable halting problem. The same lower bounds apply to the equivalence problem, which in contrast to the situation for the basic fmp model is not known to be decidable (since it is not known whether equivalence of deterministic pushdown automata is decidable).</p>


Author(s):  
Andreas Darmann ◽  
Janosch Döcker ◽  
Britta Dorn ◽  
Sebastian Schneckenburger

AbstractSeveral real-world situations can be represented in terms of agents that have preferences over activities in which they may participate. Often, the agents can take part in at most one activity (for instance, since these take place simultaneously), and there are additional constraints on the number of agents that can participate in an activity. In such a setting, we consider the task of assigning agents to activities in a reasonable way. We introduce the simplified group activity selection problem providing a general yet simple model for a broad variety of settings, and start investigating its special case where upper and lower bounds of the groups have to be taken into account. We apply different solution concepts such as envy-freeness and core stability to our setting and provide a computational complexity study for the problem of finding such solutions.


2018 ◽  
Vol 53 (1-2) ◽  
pp. 1-17
Author(s):  
Lukas Fleischer ◽  
Manfred Kufleitner

Weakly recognizing morphisms from free semigroups onto finite semigroups are a classical way for defining the class of ω-regular languages, i.e., a set of infinite words is weakly recognizable by such a morphism if and only if it is accepted by some Büchi automaton. We study the descriptional complexity of various constructions and the computational complexity of various decision problems for weakly recognizing morphisms. The constructions we consider are the conversion from and to Büchi automata, the conversion into strongly recognizing morphisms, as well as complementation. We also show that the fixed membership problem is NC1-complete, the general membership problem is in L and that the inclusion, equivalence and universality problems are NL-complete. The emptiness problem is shown to be NL-complete if the input is given as a non-surjective morphism.


1985 ◽  
Vol 29 (4) ◽  
pp. 1388-1425 ◽  
Author(s):  
D. Yu. Grigor'ev

1979 ◽  
Vol 7 (85) ◽  
Author(s):  
Neil D. Jones ◽  
Sven Skyum

<p>We determine the computational complexity of membership, emptiness and infiniteness for several types of L systems. The L systems we consider are EDOL, EOL, EDTOL, and ETOL, with and without empty productions. For each problem and each type of system we establish both upper and lower bounds on the time or memory required for solution by Turing machines.</p><p>Revised version (first version 1978 under the title <em>Complexity of Some Problems Concerning: Lindenmayer Systems</em>)</p>


Sign in / Sign up

Export Citation Format

Share Document