A KdV Model for Multi-Modal Internal Wave Propagation in Confined Basins

Author(s):  
Larry G. Redekopp
2012 ◽  
Vol 695 ◽  
pp. 341-365 ◽  
Author(s):  
Philip L.-F. Liu ◽  
Xiaoming Wang

AbstractIn this paper, a multi-layer model is developed for the purpose of studying nonlinear internal wave propagation in shallow water. The methodology employed in constructing the multi-layer model is similar to that used in deriving Boussinesq-type equations for surface gravity waves. It can also be viewed as an extension of the two-layer model developed by Choi & Camassa. The multi-layer model approximates the continuous density stratification by an $N$-layer fluid system in which a constant density is assumed in each layer. This allows the model to investigate higher-mode internal waves. Furthermore, the model is capable of simulating large-amplitude internal waves up to the breaking point. However, the model is limited by the assumption that the total water depth is shallow in comparison with the wavelength of interest. Furthermore, the vertical vorticity must vanish, while the horizontal vorticity components are weak. Numerical examples for strongly nonlinear waves are compared with laboratory data and other numerical studies in a two-layer fluid system. Good agreement is observed. The generation and propagation of mode-1 and mode-2 internal waves and their interactions with bottom topography are also investigated.


1969 ◽  
Vol 38 (2) ◽  
pp. 365-374 ◽  
Author(s):  
Joseph B. Keller ◽  
Van C. Mow

An asymptotic solution is obtained to the problem of internal wave propagation in a horizontally stratified inhomogeneous fluid of non-uniform depth. It also applies to fluids which are not stratified, but in which the constant density surfaces have small slopes. The solution is valid when the wavelength is small compared to all horizontal scale lengths, such as the radius of curvature of a wavefront, the scale length of the bottom surface variations and the scale length of the horizontal density variations. The theory underlying the solution involves rays, a phase function satisfying the eiconal equation, and amplitude functions satisfying transport equations. All these equations are solved in terms of the rays and of the solution of the internal wave problem for a horizontally stratified fluid of constant depth. The theory is thus very similar to geometrical optics and its extensions. It can be used to treat problems of propagation, reflexion from vertical cliffs or from shorelines, refraction, determination of the frequencies and wave patterns of trapped waves, etc. For fluid of constant density, it reduces to the theory of Keller (1958). The theory is applied to waves in a fluid with an exponential density distribution on a uniformly sloping beach. The predicted wavelength is shown to agree well with the experimental result of Wunsch (1969). It is also applied to determine edge waves near a shoreline and trapped waves in a channel.


1984 ◽  
Vol 142 ◽  
pp. 233-249 ◽  
Author(s):  
A. Ya. Basovich ◽  
L. Sh. Tsimring

The effect of horizontally inhomogeneous flows on internal wave propagation in a stratified ocean with a constant Brunt-Väisälä frequency is analysed. Dispersion characteristics of internal waves in a moving fluid and kinematics of wave packets in smoothly inhomogeneous flows are considered using wave-normal surfaces. It is shown that internal-wave blocking and short-wave transformation may occur in longitudinally inhomogeneous flows. For parallel flows internal-wave trapping is possible in the vicinity of the limiting layer where the wave frequency in the locally comoving frame of reference coincides with the Brunt-Väisälä frequency. Internal-wave trapping also takes place in jet-type flows in the vicinity of the flow-velocity maximum. WKB solutions of the equation describing internal-wave propagation in a parallel horizontally inhomogeneous flow in the linear approximation are obtained. Singular points of this equation and the related effect of internal-wave amplification (overreflection) under the action of the flow are investigated. The spectrum and the growth rate of internal-wave localized modes in a jet-type flow are obtained.


2011 ◽  
Vol 681 ◽  
pp. 48-79 ◽  
Author(s):  
BISHAKHDATTA GAYEN ◽  
SUTANU SARKAR

A numerical study is performed to investigate nonlinear processes during internal wave generation by the oscillation of a background barotropic tide over a sloping bottom. The focus is on the near-critical case where the slope angle is equal to the natural internal wave propagation angle and, consequently, there is a resonant wave response that leads to an intense boundary flow. The resonant wave undergoes both convective and shear instabilities that lead to turbulence with a broad range of scales over the entire slope. A thermal bore is found during upslope flow. Spectra of the baroclinic velocity, both inside the boundary layer and in the external region with free wave propagation, exhibit discrete peaks at the fundamental tidal frequency, higher harmonics of the fundamental, subharmonics and inter-harmonics in addition to a significant continuous part. The internal wave flux and its distribution between the fundamental and harmonics is obtained. Turbulence statistics in the boundary layer including turbulent kinetic energy and dissipation rate are quantified. The slope length is varied with the smaller lengths examined by direct numerical simulation (DNS) and the larger with large-eddy simulation (LES). The peak value of the near-bottom velocity increases with the length of the critical region of the topography. The scaling law that is observed to link the near-bottom peak velocity to slope length is explained by an analytical boundary-layer solution that incorporates an empirically obtained turbulent viscosity. The slope length is also found to have a strong impact on quantities such as the wave energy flux, wave energy spectra, turbulent kinetic energy, turbulent production and turbulent dissipation.


Sign in / Sign up

Export Citation Format

Share Document