scholarly journals Four-Manifolds, Curvature Bounds, and Convex Geometry

Author(s):  
Claude LeBrun
2021 ◽  
Vol 9 (1) ◽  
pp. 219-253
Author(s):  
Hiroshi Tsuji

Abstract In this paper, we consider a dilation type inequality on a weighted Riemannian manifold, which is classically known as Borell’s lemma in high-dimensional convex geometry. We investigate the dilation type inequality as an isoperimetric type inequality by introducing the dilation profile and estimate it by the one for the corresponding model space under lower weighted Ricci curvature bounds. We also explore functional inequalities derived from the comparison of the dilation profiles under the nonnegative weighted Ricci curvature. In particular, we show several functional inequalities related to various entropies.


Author(s):  
Dusa McDuff ◽  
Dietmar Salamon

This chapter examines various ways to construct symplectic manifolds and submanifolds. It begins by studying blowing up and down in both the complex and the symplectic contexts. The next section is devoted to a discussion of fibre connected sums and describes Gompf’s construction of symplectic four-manifolds with arbitrary fundamental group. The chapter also contains an exposition of Gromov’s telescope construction, which shows that for open manifolds the h-principle rules and the inclusion of the space of symplectic forms into the space of nondegenerate 2-forms is a homotopy equivalence. The final section outlines Donaldson’s construction of codimension two symplectic submanifolds and explains the associated decompositions of the ambient manifold.


2021 ◽  
Vol 51 (3) ◽  
Author(s):  
Maurice A. de Gosson

AbstractWe define and study the notion of quantum polarity, which is a kind of geometric Fourier transform between sets of positions and sets of momenta. Extending previous work of ours, we show that the orthogonal projections of the covariance ellipsoid of a quantum state on the configuration and momentum spaces form what we call a dual quantum pair. We thereafter show that quantum polarity allows solving the Pauli reconstruction problem for Gaussian wavefunctions. The notion of quantum polarity exhibits a strong interplay between the uncertainty principle and symplectic and convex geometry and our approach could therefore pave the way for a geometric and topological version of quantum indeterminacy. We relate our results to the Blaschke–Santaló inequality and to the Mahler conjecture. We also discuss the Hardy uncertainty principle and the less-known Donoho–Stark principle from the point of view of quantum polarity.


2021 ◽  
Vol 9 ◽  
Author(s):  
Joseph Malkoun ◽  
Peter J. Olver

Abstract Given n distinct points $\mathbf {x}_1, \ldots , \mathbf {x}_n$ in $\mathbb {R}^d$ , let K denote their convex hull, which we assume to be d-dimensional, and $B = \partial K $ its $(d-1)$ -dimensional boundary. We construct an explicit, easily computable one-parameter family of continuous maps $\mathbf {f}_{\varepsilon } \colon \mathbb {S}^{d-1} \to K$ which, for $\varepsilon> 0$ , are defined on the $(d-1)$ -dimensional sphere, and whose images $\mathbf {f}_{\varepsilon }({\mathbb {S}^{d-1}})$ are codimension $1$ submanifolds contained in the interior of K. Moreover, as the parameter $\varepsilon $ goes to $0^+$ , the images $\mathbf {f}_{\varepsilon } ({\mathbb {S}^{d-1}})$ converge, as sets, to the boundary B of the convex hull. We prove this theorem using techniques from convex geometry of (spherical) polytopes and set-valued homology. We further establish an interesting relationship with the Gauss map of the polytope B, appropriately defined. Several computer plots illustrating these results are included.


2021 ◽  
Vol 344 (7) ◽  
pp. 112399
Author(s):  
Oscar Defrain ◽  
Lhouari Nourine ◽  
Simon Vilmin
Keyword(s):  

2021 ◽  
Vol 9 (1) ◽  
pp. 53-64
Author(s):  
Vitali Kapovitch ◽  
Alexander Lytchak

Abstract We discuss folklore statements about distance functions in manifolds with two-sided bounded curvature. The topics include regularity, subsets of positive reach and the cut locus.


Analysis ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Siran Li

AbstractIt is a well-known fact – which can be shown by elementary calculus – that the volume of the unit ball in \mathbb{R}^{n} decays to zero and simultaneously gets concentrated on the thin shell near the boundary sphere as n\nearrow\infty. Many rigorous proofs and heuristic arguments are provided for this fact from different viewpoints, including Euclidean geometry, convex geometry, Banach space theory, combinatorics, probability, discrete geometry, etc. In this note, we give yet another two proofs via the regularity theory of elliptic partial differential equations and calculus of variations.


1990 ◽  
Vol 102 (1) ◽  
pp. 429-445 ◽  
Author(s):  
Michael T. Anderson

Sign in / Sign up

Export Citation Format

Share Document