Long-Time Solution of the Wave Equation Using Nonlinear Dissipative Structures

Author(s):  
J. Steinhoff ◽  
S. Chitta
2019 ◽  
Vol 17 (1) ◽  
pp. 89-103
Author(s):  
Qiaozhen Ma ◽  
Jing Wang ◽  
Tingting Liu

Abstract In this article, we consider the long-time behavior of solutions for the wave equation with nonlinear damping and linear memory. Within the theory of process on time-dependent spaces, we verify the process is asymptotically compact by using the contractive functions method, and then obtain the existence of the time-dependent attractor in $\begin{array}{} H^{1}_0({\it\Omega})\times L^{2}({\it\Omega})\times L^{2}_{\mu}(\mathbb{R}^{+};H^{1}_0({\it\Omega})) \end{array}$.


Geophysics ◽  
2020 ◽  
Vol 85 (1) ◽  
pp. T1-T13 ◽  
Author(s):  
Ning Wang ◽  
Tieyuan Zhu ◽  
Hui Zhou ◽  
Hanming Chen ◽  
Xuebin Zhao ◽  
...  

The spatial derivatives in decoupled fractional Laplacian (DFL) viscoacoustic and viscoelastic wave equations are the mixed-domain Laplacian operators. Using the approximation of the mixed-domain operators, the spatial derivatives can be calculated by using the Fourier pseudospectral (PS) method with barely spatial numerical dispersions, whereas the time derivative is often computed with the finite-difference (FD) method in second-order accuracy (referred to as the FD-PS scheme). The time-stepping errors caused by the FD discretization inevitably introduce the accumulative temporal dispersion during the wavefield extrapolation, especially for a long-time simulation. To eliminate the time-stepping errors, here, we adopted the [Formula: see text]-space concept in the numerical discretization of the DFL viscoacoustic wave equation. Different from existing [Formula: see text]-space methods, our [Formula: see text]-space method for DFL viscoacoustic wave equation contains two correction terms, which were designed to compensate for the time-stepping errors in the dispersion-dominated operator and loss-dominated operator, respectively. Using theoretical analyses and numerical experiments, we determine that our [Formula: see text]-space approach is superior to the traditional FD-PS scheme mainly in three aspects. First, our approach can effectively compensate for the time-stepping errors. Second, the stability condition is more relaxed, which makes the selection of sampling intervals more flexible. Finally, the [Formula: see text]-space approach allows us to conduct high-accuracy wavefield extrapolation with larger time steps. These features make our scheme suitable for seismic modeling and imaging problems.


2007 ◽  
Vol 48 (4) ◽  
pp. 503-521 ◽  
Author(s):  
P. D. Haynes ◽  
S. K. Lucas

AbstractThe diffusion equation is used to model and analyze sorption, a process used in the purification or separation of fluids. For the diffusion inside a spherical porous solid immersed in a limited-volume and well-stirred fluid, Ruthven [5], Crank [3] and, for the analogous flow of heat, Carslaw and Jaeger [2] give an eigenfunction expansion solution to the diffusion equation that provides accurate long-time solutions when only a few terms are used. However, to obtain the same accuracy for short-time solutions the number of eigenfunction terms required increases exponentially. An alternative error function solution of Carman and Haul [1] is accurate for sufficiently short times but not for long times. Although their solution is well quoted [3, 4, 6], Carman and Haul do not provide a derivation in their paper. This paper provides a full derivation of the short-time solution of Carman and Haul that uses only the first term of a negative exponential series in the Laplace domain. It is shown that the accuracy and range of the short-time result is improved by the inclusion of additional terms of the negative exponential series. An analysis of short-time and long-time resultsis presented, together with recommendations as to their use.


2016 ◽  
Vol 26 (14) ◽  
pp. 2651-2684 ◽  
Author(s):  
Assyr Abdulle ◽  
Timothée Pouchon

A family of effective equations that capture the long time dispersive effects of wave propagation in heterogeneous media in an arbitrary large periodic spatial domain [Formula: see text] is proposed and analyzed. For a wave equation with highly oscillatory periodic spatial tensors of characteristic length [Formula: see text], we prove that the solution of any member of our family of effective equations is [Formula: see text]-close to the true oscillatory wave over a time interval of length [Formula: see text] in a norm equivalent to the [Formula: see text] norm. We show that the previously derived effective equation in [T. Dohnal, A. Lamacz and B. Schweizer, Bloch-wave homogenization on large time scales and dispersive effective wave equations, Multiscale Model. Simulat. 12 (2014) 488–513] belongs to our family of effective equations. Moreover, while Bloch wave techniques were previously used, we show that asymptotic expansion techniques give an alternative way to derive such effective equations. An algorithm to compute the tensors involved in the dispersive equation and allowing for efficient numerical homogenization methods over long time is proposed.


Sign in / Sign up

Export Citation Format

Share Document