Analysis of Protein–DNA Interactions Using Surface Plasmon Resonance and a ReDCaT Chip

Author(s):  
Clare E. M. Stevenson ◽  
David M. Lawson
COSMOS ◽  
2009 ◽  
Vol 05 (01) ◽  
pp. 79-95
Author(s):  
XIAODI SU

Surface plasmon resonance (SPR) spectroscopy and quartz crystal microbalance (QCM) are surface sensitive analytical techniques capable of real-time monitoring of biomolecular interactions. In this article we review our past work on the use of these two techniques for studying protein–DNA interactions, exemplified with estrogen receptors (ER) and their response elements (ERE). Various assay schemes have been developed for a comprehensive characterization of ER–ERE interactions in terms of sequence specificity, binding affinity, stoichiometry, ligand effects on binding dynamics and conformational changes in the proteins and DNA. These are all important characteristics underlining the mechanism of ER-mediated gene transcription. With these studies we have made the following demonstrations to describe the advantages of these two techniques, namely (i) SPR technique is superior and more versatile than conventional (electrophoretic mobility shift assay) EMSA for studying protein-DNA interactions; (ii) QCM is an alternative tool for studying conformational changes in protein–DNA complexes and (iii) combinational SPR and QCM analysis provides additional characterization of biomolecular films, e.g. film thickness, water content, and conformation rigidity etc.


2000 ◽  
Author(s):  
Jennifer S. Shumaker-Parry ◽  
Charles T. Campbell ◽  
Gary D. Stormo ◽  
Fauzi S. Silbaq ◽  
Rudolf H. Aebersold

2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Markus Ritzefeld ◽  
Norbert Sewald

Several proteins, like transcription factors, bind to certain DNA sequences, thereby regulating biochemical pathways that determine the fate of the corresponding cell. Due to these key positions, it is indispensable to analyze protein-DNA interactions and to identify their mode of action. Surface plasmon resonance is a label-free method that facilitates the elucidation of real-time kinetics of biomolecular interactions. In this article, we focus on this biosensor-based method and provide a detailed guide how SPR can be utilized to study binding of proteins to oligonucleotides. After a description of the physical phenomenon and the instrumental realization including fiber-optic-based SPR and SPR imaging, we will continue with a survey of immobilization methods. Subsequently, we will focus on the optimization of the experiment, expose pitfalls, and introduce how data should be analyzed and published. Finally, we summarize several interesting publications of the last decades dealing with protein-DNA and RNA interaction analysis by SPR.


Sign in / Sign up

Export Citation Format

Share Document