Jaw Joint

2008 ◽  
pp. 819-819
Keyword(s):  
2000 ◽  
Author(s):  
Tohru Negishi ◽  
Tsuguhisa Katoh ◽  
Masahiro Fukushi ◽  
Atsushi Senoo ◽  
Yukihiro Nomura ◽  
...  
Keyword(s):  

1930 ◽  
Vol 26 (9) ◽  
pp. 940-940
Author(s):  
B. Goland

Abstracts. Otorhinolaryngology. Forschner (M. med. Woch., 1929, No. 48) describes the contracture of the jaw joint, formed during a severe form of angina and associated peritonsillar abscess. Despite the fact that all the phenomena of the underlying disease had passed and the patient felt well, the contracture of the jaw joint remained and did not respond to any ordinary treatment.


2015 ◽  
Author(s):  
Héctor Ramirez-Chaves ◽  
Stephen Wroe ◽  
Lynne Selwood ◽  
Lyn Hinds ◽  
Chris Leigh ◽  
...  

The tympanic ring, malleus and incus of the mammalian middle ear (MME) derive from the ancestral primary jaw joint of land vertebrates. In Mesozoic mammals, evolutionary detachment of the MME from the lower jaw occurred when Meckel’s cartilage - the last connection between MME and dentary – disappeared. This disappearance is famously recapitulated in early mammalian development. Further developmental recapitulation of Mesozoic MME detachment is thought to occur in the form of negative allometry and posterior/medial replacement of MME bones relative to the jaw joint. However, despite being widely accepted, such detailed recapitulation scenarios have never been quantified. Here we show, based on µCT scans of developmental series of several marsupials and monotremes, that negative allometry of MME bones relative to the skull occurs only after MME detachment, ruling it out as a developmental detachment trigger; additionally, there is no positional change of ectotympanic or malleus relative to the dentary. Differential positioning of MME bones in the two monotreme species is also not developmentally recapitulated. Our results challenge the developmental prerequisites of widely accepted evolutionary scenarios regarding MME detachment. Rather, we observe an association of MME detachment and dental eruption, suggesting a detachment trigger relating to the onset of dentary function.


2010 ◽  
Vol 142 (4) ◽  
pp. 519-530 ◽  
Author(s):  
Brooke A. Armfield ◽  
Christopher J. Vinyard
Keyword(s):  

1965 ◽  
Vol 15 (3) ◽  
pp. 577-578 ◽  
Author(s):  
William H. Saunders
Keyword(s):  

2016 ◽  
Vol 283 (1822) ◽  
pp. 20152606 ◽  
Author(s):  
Héctor E. Ramírez-Chaves ◽  
Stephen W. Wroe ◽  
Lynne Selwood ◽  
Lyn A. Hinds ◽  
Chris Leigh ◽  
...  

The ectotympanic, malleus and incus of the developing mammalian middle ear (ME) are initially attached to the dentary via Meckel's cartilage, betraying their origins from the primary jaw joint of land vertebrates. This recapitulation has prompted mostly unquantified suggestions that several suspected—but similarly unquantified—key evolutionary transformations leading to the mammalian ME are recapitulated in development, through negative allometry and posterior/medial displacement of ME bones relative to the jaw joint. Here we show, using µCT reconstructions, that neither allometric nor topological change is quantifiable in the pre-detachment ME development of six marsupials and two monotremes. Also, differential ME positioning in the two monotreme species is not recapitulated. This challenges the developmental prerequisites of widely cited evolutionary scenarios of definitive mammalian middle ear (DMME) evolution, highlighting the requirement for further fossil evidence to test these hypotheses. Possible association between rear molar eruption, full ME ossification and ME detachment in marsupials suggests functional divergence between dentary and ME as a trigger for developmental, and possibly also evolutionary, ME detachment. The stable positioning of the dentary and ME supports suggestions that a ‘partial mammalian middle ear’ as found in many mammaliaforms—probably with a cartilaginous Meckel's cartilage—represents the only developmentally plausible evolutionary DMME precursor.


2017 ◽  
Vol 372 (1713) ◽  
pp. 20150483 ◽  
Author(s):  
Abigail S. Tucker

One of the most amazing transitions and innovations during the evolution of mammals was the formation of a novel jaw joint and the incorporation of the original jaw joint into the middle ear to create the unique mammalian three bone/ossicle ear. In this review, we look at the key steps that led to this change and other unusual features of the middle ear and how developmental biology has been providing an understanding of the mechanisms involved. This starts with an overview of the tympanic (air-filled) middle ear, and how the ear drum (tympanic membrane) and the cavity itself form during development in amniotes. This is followed by an investigation of how the ear is connected to the pharynx and the relationship of the ear to the bony bulla in which it sits. Finally, the novel mammalian jaw joint and versatile dentary bone will be discussed with respect to evolution of the mammalian middle ear. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’.


Sign in / Sign up

Export Citation Format

Share Document