Evaluation of radiation risk: cytogenetic and molecular markers of low-dose radiation effects

Author(s):  
Sergey Melnov ◽  
Pavel Marozik ◽  
Tatiana Drozd
2014 ◽  
Vol 9 (sp) ◽  
pp. 608-618 ◽  
Author(s):  
Reiko Kanda ◽  

The handling of the accident at the Fukushima nuclear power plant (FNPP) operated by Tokyo Electric Power Company further underscores the importance of clear risk communication. The quality of risk communication during this crisis and in its aftermath was evaluated, however, as unsatisfactory by the government, the massmedia, and experts to date. Risk communication problems are divided into those derived from risk and those derived from communication. A lack of skill in communicating the risks involved was major point raised concerning the present situation, but we also face difficulty in informing the general public of radiation risks due to insufficient communication about these risks, a lack of education about radiation before the accident, the uncertainty of risks assessed as due to low-dose radiation, and confusion regarding knowledge about radiation effects and policy for protecting ourselves from radiation. These problems are specific to radiation and cannot be solved by communication skills alone. In this paper, I summarize concepts of radiation protection, low-dose radiation risk assessment, and the Japanese population’s recognition of radiation related to actual and potential risk communication problems about radiation. I will also briefly examine the actual problems of crisis, care, and consensus communication in response to the FNPP accident. These are categorized as either radiation-specific or general problems to discuss the elements needed to solve risk communication problems problems.


2017 ◽  
Vol 57 (1) ◽  
pp. 5-15 ◽  
Author(s):  
M. Kreuzer ◽  
A. Auvinen ◽  
E. Cardis ◽  
M. Durante ◽  
M. Harms-Ringdahl ◽  
...  

Dose-Response ◽  
2018 ◽  
Vol 16 (2) ◽  
pp. 155932581878144 ◽  
Author(s):  
Paul A. Oakley ◽  
Deed E. Harrison

Evidence-based contemporary spinal rehabilitation often requires radiography. Use of radiography (X-rays or computed tomography scans) should not be feared, avoided, or have their exposures lessened to decrease patient dose possibly jeopardizing image quality. This is because all fears of radiation exposures from medical diagnostic imaging are based on complete fabrication of health risks based on an outdated, invalid linear model that has simply been propagated for decades. We present 7 main arguments for continued use of radiography for routine use in spinal rehabilitation: (1) the linear no-threshold model for radiation risk estimates is invalid for low-dose exposures; (2) low-dose radiation enhances health via the body’s adaptive response mechanisms (ie, radiation hormesis); (3) an X-ray with low-dose radiation only induces 1 one-millionth the amount of cellular damage as compared to breathing air for a day; (4) radiography is below inescapable natural annual background radiation levels; (5) radiophobia stems from unwarranted fears and false beliefs; (6) radiography use leads to better patient outcomes; (7) the risk to benefit ratio is always beneficial for routine radiography. Radiography is a safe imaging method for routine use in patient assessment, screening, diagnosis, and biomechanical analysis and for monitoring treatment progress in daily clinical practice.


Sign in / Sign up

Export Citation Format

Share Document