Model Reduction on Inertial Manifolds of Navier–Stokes Equations Through Multi-scale Finite Element

2010 ◽  
pp. 383-396
Author(s):  
Jia-Zhong Zhang ◽  
Sheng Ren ◽  
Guan-Hua Mei
2016 ◽  
Vol 26 (3/4) ◽  
pp. 1240-1271 ◽  
Author(s):  
Camilo Andrés Bayona Roa ◽  
Joan Baiges ◽  
R Codina

Purpose – The purpose of this paper is to apply the variational multi-scale framework to the finite element approximation of the compressible Navier-Stokes equations written in conservation form. Even though this formulation is relatively well known, some particular features that have been applied with great success in other flow problems are incorporated. Design/methodology/approach – The orthogonal subgrid scales, the non-linear tracking of these subscales, and their time evolution are applied. Moreover, a systematic way to design the matrix of algorithmic parameters from the perspective of a Fourier analysis is given, and the adjoint of the non-linear operator including the volumetric part of the convective term is defined. Because the subgrid stabilization method works in the streamline direction, an anisotropic shock capturing method that keeps the diffusion unaltered in the direction of the streamlines, but modifies the crosswind diffusion is implemented. The artificial shock capturing diffusivity is calculated by using the orthogonal projection onto the finite element space of the gradient of the solution, instead of the common residual definition. Temporal derivatives are integrated in an explicit fashion. Findings – Subsonic and supersonic numerical experiments show that including the orthogonal, dynamic, and the non-linear subscales improve the accuracy of the compressible formulation. The non-linearity introduced by the anisotropic shock capturing method has less effect in the convergence behavior to the steady state. Originality/value – A complete investigation of the stabilized formulation of the compressible problem is addressed.


SeMA Journal ◽  
2012 ◽  
Vol 60 (1) ◽  
pp. 51-74
Author(s):  
Christine Bernardi ◽  
Tomás Chacón Rebollo ◽  
Macarena Gómez Mármol

Author(s):  
Alexander Danilov ◽  
Alexander Lozovskiy ◽  
Maxim Olshanskii ◽  
Yuri Vassilevski

AbstractThe paper introduces a finite element method for the Navier-Stokes equations of incompressible viscous fluid in a time-dependent domain. The method is based on a quasi-Lagrangian formulation of the problem and handling the geometry in a time-explicit way. We prove that numerical solution satisfies a discrete analogue of the fundamental energy estimate. This stability estimate does not require a CFL time-step restriction. The method is further applied to simulation of a flow in a model of the left ventricle of a human heart, where the ventricle wall dynamics is reconstructed from a sequence of contrast enhanced Computed Tomography images.


Author(s):  
Kangrui Zhou ◽  
Yueqiang Shang

AbstractBased on full domain partition, three parallel iterative finite-element algorithms are proposed and analyzed for the Navier–Stokes equations with nonlinear slip boundary conditions. Since the nonlinear slip boundary conditions include the subdifferential property, the variational formulation of these equations is variational inequalities of the second kind. In these parallel algorithms, each subproblem is defined on a global composite mesh that is fine with size h on its subdomain and coarse with size H (H ≫ h) far away from the subdomain, and then we can solve it in parallel with other subproblems by using an existing sequential solver without extensive recoding. All of the subproblems are nonlinear and are independently solved by three kinds of iterative methods. Compared with the corresponding serial iterative finite-element algorithms, the parallel algorithms proposed in this paper can yield an approximate solution with a comparable accuracy and a substantial decrease in computational time. Contributions of this paper are as follows: (1) new parallel algorithms based on full domain partition are proposed for the Navier–Stokes equations with nonlinear slip boundary conditions; (2) nonlinear iterative methods are studied in the parallel algorithms; (3) new theoretical results about the stability, convergence and error estimates of the developed algorithms are obtained; (4) some numerical results are given to illustrate the promise of the developed algorithms.


Sign in / Sign up

Export Citation Format

Share Document