Experimental Modal Analysis of 9-meter Research-sized Wind Turbine Blades

Author(s):  
D. Todd Griffith ◽  
Thomas G. Carne
2013 ◽  
Vol 790 ◽  
pp. 655-658
Author(s):  
Chi Chen ◽  
Min Wang ◽  
Long Zou

The modal analysis is an approximate method to study the dynamic characteristics of the structure, the modal is the natural vibration characteristics of the structure, each modal has a specific natural frequency, damping ratios and mode shapes. This thesis will take 1.2MW horizontal axis wind turbine blade for example, and use parametric language APDL of ANSYS for directly modeling, then set the basic parameters of the material, mesh and discuss modal analysis, lastly conduct a detailed analysis of the results.


2014 ◽  
Vol 952 ◽  
pp. 181-185
Author(s):  
Qian Qian Zhou ◽  
He Sun ◽  
Chun Bao Liu ◽  
Yang Wang ◽  
Xiao Guang Liu

Wind turbine blade is an important component to capture wind energy and converse energy. Basing on Wilson optimization method and engineering pratice, 2MW wind turbine blade’s aerodynamic profile is designed. Meanwhile, in order to avoid the resonance damage, top 10 rank modal frequencies and displacement gradient distribution contours are obtained through modal analysis. The results show that blade’s natural frequency does not coincide with the external excitation frequency, which avoids the resonance damage. Blade’s major vibration forms are waving and shimmy, requiring the ability of excellent resisting torsion. Therefore, the design should enhance bending stiffness of the blade. This paper provides an effective method for large wind turbine blades’ design and optimization.


2020 ◽  
Vol 30 ◽  
pp. 998-1004
Author(s):  
Hicham Boudounit ◽  
Mostapha Tarfaoui ◽  
Dennoun Saifaoui

2013 ◽  
Vol 569-570 ◽  
pp. 603-610 ◽  
Author(s):  
Martin Dalgaard Ulriksen ◽  
Jonas Falk Skov ◽  
Kristoffer Ahrens Dickow ◽  
Poul Henning Kirkegaard ◽  
Lars Damkilde

The aim of the present paper is to evaluate structural health monitoring (SHM) techniques based on modal analysis for crack detection in small wind turbine blades. A finite element (FE) model calibrated to measured modal parameters will be introduced to cracks with different sizes along one edge of the blade. Changes in modal parameters from the FE model are compared with data obtained from experimental tests. These comparisons will be used to validate the FE model and subsequently discuss the usability of SHM techniques based on modal parameters for condition monitoring of wind turbine blades.


2016 ◽  
Vol 15 (3) ◽  
pp. 289-301 ◽  
Author(s):  
Emilio Di Lorenzo ◽  
Giuseppe Petrone ◽  
Simone Manzato ◽  
Bart Peeters ◽  
Wim Desmet ◽  
...  

2011 ◽  
Vol 146 ◽  
pp. 170-184 ◽  
Author(s):  
M. Tarfaoui ◽  
H. Khadimallah ◽  
Abdellatif Imad ◽  
J.Y. Pradillon

We currently notice a substantial growth in the wind energy sector worldwide. This growth is expected to be even faster in the coming years. This means that a massive number of wind turbine blades will be produced in the forthcoming years. There is a large potential for materials savings in these blades. The analysis of designed blade is done in dynamic loading. Five types of spars cross-section are taken in this work. The blade and spar are of composite material. The Finite element modal analysis of designed blade is done in ABAQUS. The scope of the present work is to investigate the structural modal analysis of full-scale 48m fiberglass composite wind turbine blades for 5MW horizontal axis wind turbine and through this to assess the potential for materials savings and consequent reductions of the rotor weight. The entire wind turbine can benefit from such weight reductions through decreased dynamics loads and thus leave room for further optimization. A numerical work has been used to address the most adequate spar shape and to get an understanding of the complex structural behavior of wind turbine blades. Five different types of structural reinforcements helping to prevent undesired structural elastic mechanisms are presented. Comparisons of the eigenfrequencies observed in the full-scale tests are presented and conclusions are drawn based on the mechanisms found.


2009 ◽  
Vol 129 (5) ◽  
pp. 689-695
Author(s):  
Masayuki Minowa ◽  
Shinichi Sumi ◽  
Masayasu Minami ◽  
Kenji Horii

Sign in / Sign up

Export Citation Format

Share Document