test setup
Recently Published Documents


TOTAL DOCUMENTS

517
(FIVE YEARS 145)

H-INDEX

16
(FIVE YEARS 4)

2022 ◽  
Vol 88 ◽  
pp. 103253
Author(s):  
Lasse Jakobsen ◽  
Filip Gertz Lysdal ◽  
Timo Bagehorn ◽  
Uwe G. Kersting ◽  
Ion Marius Sivebaek

2022 ◽  
Vol 12 (2) ◽  
pp. 561
Author(s):  
Simon Cleven ◽  
Michael Raupach ◽  
Thomas Matschei

The diagnostics of constructions built with steel fibre reinforced concrete are extremely difficult to conduct because, typically, no information on the actual amount and orientation of the fibres is available. Therefore, it is of great interest to engineers to have the possibility to determine the steel fibre content and, at best, also the orientation of the fibres in existing structures. For this purpose, an easy-to-use test setup was developed and tested, in the course of laboratory investigations. This method can be used for cylinders, for example drilling cores, that can later be taken of existing structures, to determine both the fibre content and orientation. Based on these results, a model for cylindrical specimens was derived, which can be used for varying concrete compositions with steel fibre contents of up to 80 kg/m3. In the case of missing information concerning the concrete composition, it allows an initial estimation for the fibre content. In case additional information about the concrete composition is available, a much higher accuracy of the projected steel fibre content and therefore, an assessment of the building’s condition is possible.


2022 ◽  
pp. 1-13
Author(s):  
Mishiga Vallabhan K. G. ◽  
Marcin Dudek ◽  
Christian Holden

Summary Produced water is a major challenge in the oil and gas industry, especially with the aging of oil fields. Proper treatment of produced water is important in reducing the environmental footprint of oil and gas production. On offshore platforms, hydrocyclones are commonly used for produced-water treatment. However, maintaining the efficiency of hydrocyclones subjected to plant disturbances is a difficult task owing to their compact nature. This paper describes a new experimental test rig built at the Department of Mechanical and Industrial Engineering at the Norwegian University of Science and Technology for testing industrial-scale hydrocyclones. The test setup can emulate first-stage separation and create plant disturbances, such as changes in flow rate, oil concentration, and oil droplet distribution at the inlet of the hydrocyclones. Also, the setup is capable of testing different control algorithms, which helps to maintain the efficiency of hydrocyclones in the presence of such disturbances. The test rig is equipped with various instruments that can monitor such parameters as pressure, flow, temperature, and oil concentration. A typical pressure drop ratio (PDR) control scheme for hydrocyclones is tested in the test rig, which can control the disturbances in the inflow rate. The PDR control scheme does not detect disturbances in the inlet oil concentration and changes in droplet distribution, and these scenarios are shown experimentally in this paper.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Recep Demirsöz ◽  
Mehmet Erdl Korkmaz ◽  
Munish Kumar Gupta ◽  
Alberto Garcia Collado ◽  
Grzegorz M. Krolczyk

Purpose The main purpose of this work is to explore the erosion wear characteristics of additively manufactured aluminium alloy. Additive manufacturing (AM), also known as three-dimensional (3D) manufacturing, is the process of manufacturing a part designed in a computer environment using different types of materials such as plastic, ceramic, metal or composite. Similar to other materials, aluminum alloys are also exposed to various wear types during operation. Production efficiency needs to be aware of its reactions to wearing mechanisms. Design/methodology/approach In this study, quartz sands (SiO2) assisted with oxide ceramics were used in the slurry erosion test setup and its abrasiveness on the AlSi10Mg aluminum alloy material produced by the 3D printer as selective laser melting (SLM) technology was investigated. Quartz was sieved with an average particle size of 302.5 µm, and a slurry environment containing 5, 10 and 15% quartz by weight was prepared. The experiments were carried out at the velocity of 1.88 (250 rpm), 3.76 (500 rpm) and 5.64 m/s (750 rpm) and the impact angles 15, 45 and 75°. Findings With these experimental studies, it has been determined that the abrasiveness of quartz sand prepared in certain particle sizes is directly related to the particle concentration and particle speed, and that the wear increases with the increase of the concentration and rotational speed. Also, the variation of weight loss and surface roughness of the alloy was investigated after different wear conditions. Surface roughness values at 750 rpm speed, 10% concentration and 75° impingement angle are 0.32 and 0.38 µm for 0 and 90° samples, respectively, with a difference of approximately 18%. Moreover, concerning a sample produced at 0°, the weight loss at 250 rpm at 10% concentration and 45° particle impact angle is 32.8 mg, while the weight loss at 500 rpm 44.4 mg, and weight loss at 750 rpm is 104 mg. Besides, the morphological structures of eroded surfaces were examined using the scanning electron microscope to understand the wear mechanisms. Originality/value The researchers verified that this specific coating condition increases the slurry wear resistance of the mentioned steel. There are many studies about slurry wear tests; however, there is no study in the literature about the quartz sand (SiO2) assisted slurry-erosive wear of AlSi10Mg alloy produced with AM by using SLM technology. This study is needed to fill this gap in the literature and to examine the erosive wear capability of this current material in different environments. The novelty of the study is the use of SiO2 quartz sands assisted by oxide ceramics in different concentrations for the slurry erosion test setup and the investigations on erosive wear resistance of AlSi10Mg alloy manufactured by AM.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ali Hajnayeb

Detection of cavitation in centrifugal pumps is critical in their condition monitoring. In order to detect cavitation more accurately and confidently, more advanced signal processing techniques are needed. For the classification of a pump conditions based on the outputs of these techniques, advanced machine learning techniques are needed. In this research, an automatic system for cavitation detection is proposed based on machine learning. Bispectral analysis is used for analyzing the vibration signals. The resulting bispectrum images are given to convolutional neural networks (CNNs) as inputs. The CNNs are a pretrained AlexNet and a pretrained GoogleNet, which are used in this application through transfer learning. On the contrary, a laboratory test setup is used for generating controlled cavitation in a centrifugal pump. The suggested algorithm is implemented on the vibration dataset acquired from the laboratory pump test setup. The results show that the cavitation state of the pump can be detected accurately using this system without any need to image processing or feature extraction.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hakan Göcerler ◽  
Simon Medina ◽  
Michael Adler ◽  
Josef Brenner ◽  
Andreas Tadler ◽  
...  

Purpose Dry eye syndrome is one of the most common reasons for eye-related discomfort which, without treatment, in some cases may even lead to corneal damage. Blinking, baseline and reflex lachrymation and drainage compromise the topical application of therapeutics demanding repeated, often hourly applications of common lubricants. In contrast, topically administered chitosan-N-acetylcysteine-based eye drops were reported to sustain on the ocular surface for more than 24 h. The thiolated biopolymer can interact with the corneal mucin layer thereby forming covalent disulphide bridges, which may contribute to extended residence times. Design/methodology/approach In this study, the tribological characteristics of four different lubricants including hyaluronic acid and chitosan-N-acetylcysteine containing commercially available eye drops were investigated. For this purpose, a representative test setup was developed, which mimics the contact between the cornea and the eyelid wiper. Gels with different elastic properties coated with a mucin layer were used as a substrate to mimic the corneal surface. Tests were conducted with a micro-tribometer, and friction values were recorded. Contact zones were characterized by X-ray photoelectron spectroscopy to investigate wear and thiol bonding on the surface. Findings Results revealed the lowest average coefficient of friction values for chitosan-N-acetylcysteine-based eye drops and substrate dependence of the test setup. Originality/value In this study, the authors introduced an in vitro system to test different types of eye drops so that chemical interaction with the mucin layer can be observed. These interactions change the tribological performance significantly and must be considered to have results relevant to the actual application.


2021 ◽  
Vol 172 ◽  
pp. 112744
Author(s):  
Sebastian Stanculovic ◽  
Rosa Difonzo ◽  
Andrea Allio ◽  
Konstantinos A. Avramidis ◽  
Philip Brücker ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Sayyad Zahid Qamar ◽  
Maaz Akhtar ◽  
Tasneem Pervez

A full scale experimental setup was designed and commissioned for testing of swelling elastomer seals against a casing (cased hole) and formation (open hole). Actual replicate of wellbore was designed with varying inside diameters and roughness to reproduce the effect of actual formation. The Dynaset packer mounted on a 7-inch tubular was allowed to swell against a 9–5/8-inch casing, while the fast swell packer mounted on a 9–5/8-inch tubular was allowed to swell against the 12–1/4-inch replicated well bore. This one-of-its-kind test setup can demonstrate the way the elastomers swell out and fill the asperities against smooth outer casing (cased hole) or against rough wellbore surface (open hole). Dismantling of the test setup midway through the testing scheme revealed a severely dimpled surface of the swelled elastomer.


2021 ◽  
Vol 7 (2) ◽  
pp. 743-746
Author(s):  
Stefan Siewert ◽  
Rudolf Guthoff ◽  
Frank Kamke ◽  
Swen Grossmann ◽  
Michael Stiehm ◽  
...  

Abstract Implant devices for micro invasive glaucoma surgery (MIGS) are gaining increasing acceptance in clinical ophthalmic use. The implant requirements are defined in international standards, such as ANSI Z80.27-2014 and the 2015 Guidance for Industry and Food and Drug Administration Staff “Premarket Studies of Implantable Minimally Invasive Glaucoma Surgical (MIGS) Devices”. The exact fluid-mechanical characterization represents a crucial part of the development and approval of innovative implant devices for MIGS. The current work describes the development and preliminary validation of a versatile test facility for pivotal characterization of glaucoma drainage devices. The test setup enables a pressurization of test specimens by means of two water columns. For measurement of pressure and volume flow, a pressure transducer and a total of three liquid flow meters were implemented into the test setup. Validation was conducted by experimental pressureflow characterization of standardized tubes and a comparison to theoretical results according to Hagen Poiseuille's law for stationary laminar flow of a Newtonian fluid in a tube with a circular cross section. Ultrapure water at (35 ± 2) °C was used for the analyses. The developed test setup potentially enables pressure-flow characterization of test specimens in a wide flow range of 0 μl min-1 ≤ Q ≤ 5.000 μl min-1. The preliminary test facility validation showed a good agreement of measured and theoretical volume flow characteristics as a function of the pressure difference, in the currently investigated flow range of Q < 80 μl min-1. The developed test facility is suitable for pivotal in vitro characterization of glaucoma drainage devices. Future investigations will focus on the final validation of the whole flow range and on the use of the test facility for fluid-mechanical characterization of self-developed prototypes of glaucoma microstents as well as commercially available glaucoma drainage devices.


2021 ◽  
Vol 7 (2) ◽  
pp. 311-314
Author(s):  
Robert Mau ◽  
Sophie Kussauer ◽  
Uta Matzmohr ◽  
Robert David ◽  
Hermann Seitz

Abstract Micro-electrode array (MEA) systems are noninvasive platforms for the investigation of electrophysiological properties of cell layers, such as spontaneously active cardiomyocytes. An MEA chip is composed of two-dimensional grids of dot-like electrodes embedded into glass. Here we present a test setup featuring a customised two-chamber silicone overlay. The overlay is designed to be placed on an MEA with two separate electrode fields and enables the seeding of two distinct cell sub-types on the MEA for synchronised drug testing applications while giving the possibility of analysing intersubtype-specific cellular interactions. The overlay has a full size of 10 x 10 x 5 mm (width x length x height), each chamber has a size of 2.5 x 6 x 5 mm (V = 75 mm³). The chambers are separated by a wall with a thickness of 0.3 mm. The overlay was manufactured via silicone-casting, utilising a 3D printed model. The model is 3D printed via high accurate digital light processing (DLP). In addition, a DLP 3D printed cover optimises the attachment of the overlay on an MEA. A proofof- principle of the utilisation of the overlay is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document