Understanding Mechanisms of Cyclic Plastic Strain Accumulation under High Temperature Loading Conditions

Author(s):  
Wael Abuzaid ◽  
Huseyin Sehitoglu ◽  
John Lambros ◽  
Jay Carroll ◽  
Mallory Casperson ◽  
...  
2020 ◽  
Vol 36 (2) ◽  
pp. 167-176 ◽  
Author(s):  
Daniele Barbera ◽  
Haofeng Chen

ABSTRACTStructural integrity plays an important role in any industrial activity, due to its capability of assessing complex systems against sudden and unpredicted failures. The work here presented investigates an unexpected new mechanism occurring in structures subjected to monotonic and cyclic loading at high temperature creep condition. An unexpected accumulation of plastic strain is observed to occur, within the high-temperature creep dwell. This phenomenon has been observed during several full inelastic finite element analyses. In order to understand which parameters make possible such behaviour, an extensive numerical study has been undertaken on two different notched bars. The notched bar has been selected due to its capability of representing a multiaxial stress state, which is a practical situation in real components. Two numerical examples consisting of an axisymmetric v-notch bar and a semi-circular notched bar are considered, in order to investigate different notches severity. Two material models have been considered for the plastic response, which is modelled by both Elastic-Perfectly Plastic and Armstrong-Frederick kinematic hardening material models. The high-temperature creep behaviour is introduced using the time hardening law. To study the problem several results are presented, as the effect of the material model on the plastic strain accumulation, the effect of the notch severity and the mesh element type and sensitivity. All the findings further confirm that the phenomenon observed is not an artefact but a real mechanism, which needs to be considered when assessing off-design condition. Moreover, it might be extremely dangerous if the cyclic loading condition occurs at such a high loading level.


Author(s):  
Xian-Kui Zhu ◽  
Brian N. Leis

Work hardening and Bauschinger effects on plastic deformation and fatigue life for a beam and an elbow under cyclic loading are examined using finite element analysis (FEA). Three typical material plastic hardening models, i.e. isotropic, kinematic and combined isotropic/kinematic hardening models are adopted in the FEA calculations. Based on the FEA results of cyclic stress and strain at a critical location and using an energy-based fatigue damage parameter, the fatigue lives are predicted for the beam and elbow. The results show that (1) the three material hardening models determine similar stress at the critical location with small differences during the cyclic loading, (2) the isotropic model underestimates the cyclic plastic strain and overestimates the fatigue life, (3) the kinematic model overestimates the cyclic plastic strain and underestimates the fatigue life, and (4) the combined model predicts the intermediate cyclic plastic strain and reasonable fatigue life.


Sign in / Sign up

Export Citation Format

Share Document