Neuro-Fuzzy and Regression Techniques for CNC Thermal Error Compensation

Author(s):  
W. Dixon ◽  
Q. Mehdi ◽  
N. Gough ◽  
J. Pitchford
2013 ◽  
Vol 819 ◽  
pp. 76-80 ◽  
Author(s):  
Bo Yang ◽  
Yi Wang ◽  
Wen Li Yu ◽  
Xin Hua Yao ◽  
Jian Zhong Fu

Great efforts have been made to improve the accuracy of NC machine tools, within which thermal error compensation is one of the most efficient ways. A new thermal error compensation instrument which is based on thermal modal analysis for NC machine tools is introduced in this paper. OMRONsCJ2M-CPU11 is used as microcontroller, and SAILING TECHNOLOGYs STA-A08 temperature measuring modules as temperature transmitter. Through hardware and software design, high precision and stability can be achieved. By measuring several key points temperature and making use of a thermal error compensation theory, real-time thermal error compensation can be output to the machine tool, thus thermal error can be reduced.


2014 ◽  
Vol 75 (5-8) ◽  
pp. 933-946 ◽  
Author(s):  
Shibin Yin ◽  
Yin Guo ◽  
Yongjie Ren ◽  
Jigui Zhu ◽  
Shourui Yang ◽  
...  

2011 ◽  
Vol 87 ◽  
pp. 59-62
Author(s):  
Peng Zheng ◽  
Xin Bao ◽  
Fang Cui

The thermal deformation error that is the biggest error of effecting the machining precision of Direct-drive A/C Bi-rotary Milling Head was narrated in brief. Based on the introduce of the study status on the thermal error compensation techniques of CNC Machine tool, the momentum of thermal deformation of Bi-rotary Milling Head was analyzed. According to the Trigonometric Relations in A/C axis rotation angle of Bi-rotary Milling Head and the momentum of thermal deformation in Bi-rotary Milling Head and -axis respectively, a thermal error compensation model was established to make the Machine tool to compensate for thermal errors in -axis.


2013 ◽  
Vol 712-715 ◽  
pp. 1571-1575
Author(s):  
Feng Yang ◽  
Qia Heng Tang ◽  
Yin Biao Guo

In this paper, a thermal error analysis and compensation method for a high precision aspheric measuring platform driven by a linear motor system is presented. After analyzing the heat source of thermal deformation, the thermal deformation of guide is selected to be object, and the thermal analysis method of guide in heat balance state is proposed. According to the motor temperature at different positions, the thermal error curve of guide is obtained through simulation. Modeling the global positioning error of measuring platform and the compensation model of thermal error using polynomial fitting, the thermal error compensation experiments is implemented by applying compensation system of measuring platform's controller. The experimental results show that the maximum positioning error in heat balance state is reduced from 1.5μm to 0.7μm, which verify the validity of thermal error compensation model.


Sign in / Sign up

Export Citation Format

Share Document