Thermal Error Analysis and Compensation Technology for High Precision Aspheric Measuring Platform

2013 ◽  
Vol 712-715 ◽  
pp. 1571-1575
Author(s):  
Feng Yang ◽  
Qia Heng Tang ◽  
Yin Biao Guo

In this paper, a thermal error analysis and compensation method for a high precision aspheric measuring platform driven by a linear motor system is presented. After analyzing the heat source of thermal deformation, the thermal deformation of guide is selected to be object, and the thermal analysis method of guide in heat balance state is proposed. According to the motor temperature at different positions, the thermal error curve of guide is obtained through simulation. Modeling the global positioning error of measuring platform and the compensation model of thermal error using polynomial fitting, the thermal error compensation experiments is implemented by applying compensation system of measuring platform's controller. The experimental results show that the maximum positioning error in heat balance state is reduced from 1.5μm to 0.7μm, which verify the validity of thermal error compensation model.

2011 ◽  
Vol 87 ◽  
pp. 59-62
Author(s):  
Peng Zheng ◽  
Xin Bao ◽  
Fang Cui

The thermal deformation error that is the biggest error of effecting the machining precision of Direct-drive A/C Bi-rotary Milling Head was narrated in brief. Based on the introduce of the study status on the thermal error compensation techniques of CNC Machine tool, the momentum of thermal deformation of Bi-rotary Milling Head was analyzed. According to the Trigonometric Relations in A/C axis rotation angle of Bi-rotary Milling Head and the momentum of thermal deformation in Bi-rotary Milling Head and -axis respectively, a thermal error compensation model was established to make the Machine tool to compensate for thermal errors in -axis.


2013 ◽  
Vol 431 ◽  
pp. 132-136
Author(s):  
Ji Zhu Liu ◽  
Wei Wei Yang ◽  
Yang Jun Wang ◽  
Tao Chen ◽  
Ming Qiang Pan ◽  
...  

In the technology of thermal error compensation in positioning platform with large trip and high precision, selecting the temperature measurement points rationally is particular important for successfully establishing the model of compensation. The method uses simulation to track platform heat distribution and thermal deformation under various thermal conditions. Temperature variables are grouped by different surfaces of the platform. Then a degree of grey incidence from grey system theory is introduced to identify the key temperature measurement points of each surface. Through the experiment data of thermal stress coupling analysis on the platform, the degree of correlation between all temperature measurement points and thermal displacement can be solved. The key temperature measurement points are confirmed by the largest value of the degree of correlation of each surface.


2013 ◽  
Vol 655-657 ◽  
pp. 305-309
Author(s):  
Yao Man Zhang ◽  
Ren Jun Gu ◽  
Jia Liang Han

The performances of the high precision turning center will be influenced by the thermal characteristics of the headstock seriously, and accurately predict thermal characteristics of the headstock are helpful to improve the design level. The headstock of a high precision turning center produced by some plant has been regarded as the research objects of the paper. First the steady temperature distribution and thermal deformation of the headstock were calculated based the finite element analysis models of the headstock. Then the temperature sensitive points of the headstock were obtained by using the grey incidence analysis method. Finally the thermal error compensation model was built by using multiple linear regression method. The study lays a foundation for the thermal error compensation of the headstock of the turning center.


Author(s):  
Byung-Sub Kim ◽  
Young-Chan Song ◽  
Chun-Hong Park ◽  
Jong-Kweon Park

High precision machines require very stable operational environment: temperature control and vibration isolation. Tight temperature control for machines usually demand high cost to operate air conditioners. Some of high precision machines require the ambient temperature changes to maintain within ±0.1 degrees. In this paper, we present a thermal error compensation scheme and experimental results for improving machining accuracy of a high precision lathe. The testbed lathe has X- and Z-axes and they are driven by linear motors and hydrostatic oil bearing. Due to the temperature changes of the ambient air and supplied oil to the hydrostatic bearing, thermal deformation is generated and measured to be as much as 200–300 nanometers. To identify the dynamic relations between the temperature changes and the thermal drift, a state-space model is used in which state variables are constructed from the input measured temperatures and the output thermal drift data. The identified model is implemented in a servo control loop and the predicted thermal error is compensated by subtracting the predicted thermal drift from the servo command. In our simulation, a thermal error of 97 nanometers RMS over 3 hours is reduced to 55 nanometers RMS. Experimental results show an average of 24% reduction in thermal drift and support the validity of our approach.


2021 ◽  
Vol 2021 (3) ◽  
pp. 4706-4712
Author(s):  
O. Horejs ◽  
◽  
M. Mares ◽  
A. Mlcoch ◽  
◽  
...  

The development of a smart sensor is proposed to improve the thermal error compensation model of a multi-spindle automatic lathe. The smart sensor is capable of gathering real-time information about rotating spindle drum temperatures. Thereafter, the temperature obtained by the smart sensor is applied as input to the thermal error compensation model based on the transfer function instead of an indigenous temperature measured on the stationary part of the multi-spindle automatic lathe. Using spindle drum temperature as the model input increases the prediction of thermal displacements in the X-axis by 16%.


2013 ◽  
Author(s):  
Xianli Lang ◽  
Enming Miao ◽  
Yayun Gong ◽  
Pengcheng Niu ◽  
Zhishang Xu

Sign in / Sign up

Export Citation Format

Share Document