Higher-Dimensional Dynamical Systems

Author(s):  
Graham Everest ◽  
Thomas Ward
1993 ◽  
Vol 07 (20n21) ◽  
pp. 3567-3596 ◽  
Author(s):  
M.P. Bellon ◽  
J-M. Maillard ◽  
C-M. Viallet

We describe a class of non-linear transformations acting on many variables. These transformations have their origin in the theory of quantum integrability: they appear in the description of the symmetries of the Yang-Baxter equations and their higher dimensional generalizations. They are generated by involutions and act as birational mappings on various projective spaces. We present numerous figures, showing successive iterations of these mappings. The existence of algebraic invariants explains the aspect of these figures. We also study deformations of our transformations.


2009 ◽  
Vol 21 (08) ◽  
pp. 949-979 ◽  
Author(s):  
BENOIT SAUSSOL

We present some recurrence results in the context of ergodic theory and dynamical systems. The main focus will be on smooth dynamical systems, in particular, those with some chaotic/hyperbolic behavior. The aim is to compute recurrence rates, limiting distributions of return times, and short returns. We choose to give the full proofs of the results directly related to recurrence, avoiding as much as possible to hide the ideas behind technical details. This drove us to consider as our basic dynamical system a one-dimensional expanding map of the interval. We note, however, that most of the arguments still apply to higher dimensional or less uniform situations, so that most of the statements continue to hold. Some basic notions from the thermodynamic formalism and the dimension theory of dynamical systems will be recalled.


2021 ◽  
Vol 1 (1) ◽  
pp. 88-94
Author(s):  
Daniel Gerbet ◽  
Klaus Röbenack

Controllability and observability are important system properties in control theory. These properties cannot be easily checked for general nonlinear systems. This paper addresses the local and global observability as well as the decomposition with respect to observability of polynomial dynamical systems embedded in a higher-dimensional state-space. These criteria are applied on some example system.


2005 ◽  
Vol 15 (02) ◽  
pp. 547-555 ◽  
Author(s):  
YUMING SHI ◽  
GUANRONG CHEN

This paper is concerned with chaotification of discrete dynamical systems in finite-dimensional real spaces, via feedback control techniques. A chaotification theorem for one-dimensional discrete dynamical systems and a chaotification theorem for general higher-dimensional discrete dynamical systems are established, respectively. The controlled systems are proved to be chaotic in the sense of Devaney. In particular, the maps corresponding to the original systems and designed controllers are only required to satisfy some mild assumptions on two very small disjoint closed subsets in the domains of interest. This condition is weaker than those in the existing relevant literature.


Sign in / Sign up

Export Citation Format

Share Document