The Martingale Problem for a Differential Operator with Piecewise Continuous Coefficients

Author(s):  
Ping Gao
1962 ◽  
Vol 14 ◽  
pp. 359-378 ◽  
Author(s):  
John B. Butler

Letbe an ordinary differential operator of order h whose coefficients are (η, η) matrices defined on the interval 0 ≤ x < ∞, hη = n = 2v. Let the operator L0 be formally self adjoint and let v boundary conditions be given at x = 0 such that the eigenvalue problem(1.1)has no non-trivial square integrable solution. This paper deals with the perturbed operator L∈ = L0 + ∈q where ∈ is a real parameter and q(x) is a bounded positive (η, η) matrix operator with piecewise continuous elements 0 ≤ x < ∞. Sufficient conditions involving L0, q are given such that L∈ determines a selfadjoint operator H∈ and such that the spectral measure E∈(Δ′) corresponding to H∈ is an analytic function of ∈, where Δ′ is a subset of a fixed bounded interval Δ = [α, β]. The results include and improve results obtained for scalar differential operators in an earlier paper (3).


2006 ◽  
Vol 11 (1) ◽  
pp. 47-78 ◽  
Author(s):  
S. Pečiulytė ◽  
A. Štikonas

The Sturm-Liouville problem with various types of two-point boundary conditions is considered in this paper. In the first part of the paper, we investigate the Sturm-Liouville problem in three cases of nonlocal two-point boundary conditions. We prove general properties of the eigenfunctions and eigenvalues for such a problem in the complex case. In the second part, we investigate the case of real eigenvalues. It is analyzed how the spectrum of these problems depends on the boundary condition parameters. Qualitative behavior of all eigenvalues subject to the nonlocal boundary condition parameters is described.


2020 ◽  
Vol 9 (8) ◽  
pp. 5343-5348 ◽  
Author(s):  
T. G. Shaba ◽  
A. A. Ibrahim ◽  
M. F. Oyedotun

2019 ◽  
pp. 105-107
Author(s):  
A. S. Busygin ◽  
А. V. Shumov

The paper considers a method for simulating the flight of a multistage rocket in Matlab using Simulink software for control and guidance. The model takes into account the anisotropy of the gravity of the Earth, changes in the pressure and density of the atmosphere, piecewise continuous change of the center of mass and the moment of inertia of the rocket during the flight. Also, the proposed model allows you to work out various targeting options using both onboard and ground‑based information tools, to load information from the ground‑based radar, with imitation of «non‑ideality» of incoming target designations as a result of changes in the accuracy of determining coordinates and speeds, as well as signal fluctuations. It is stipulated that the design is variable not only by the number of steps, but also by their types. The calculations are implemented in a matrix form, which allows parallel operations in each step of processing a multidimensional state vector of the simulated object.


Sign in / Sign up

Export Citation Format

Share Document