The classification theorem and Harish-Chandra modules for the dual group

Author(s):  
Jeffrey Adams ◽  
Dan Barbasch ◽  
David A. Vogan
Author(s):  
Benson Farb ◽  
Dan Margalit

This chapter explains and proves the Nielsen–Thurston classification of elements of Mod(S), one of the central theorems in the study of mapping class groups. It first considers the classification of elements for the torus of Mod(T² before discussing higher-genus analogues for each of the three types of elements of Mod(T². It then states the Nielsen–Thurston classification theorem in various forms, as well as a connection to 3-manifold theory, along with Thurston's geometric classification of mapping torus. The rest of the chapter is devoted to Bers' proof of the Nielsen–Thurston classification. The collar lemma is highlighted as a new ingredient, as it is also a fundamental result in the hyperbolic geometry of surfaces.


Author(s):  
Timo Richarz ◽  
Jakob Scholbach
Keyword(s):  

AbstractWe refine the geometric Satake equivalence due to Ginzburg, Beilinson–Drinfeld, and Mirković–Vilonen to an equivalence between mixed Tate motives on the double quotient $$L^+ G {\backslash }LG / L^+ G$$ L + G \ L G / L + G and representations of Deligne’s modification of the Langlands dual group $${\widehat{G}}$$ G ^ .


2012 ◽  
Vol 2012 ◽  
pp. 1-17
Author(s):  
Yaning Wang ◽  
Ximin Liu

We introduce and study generalized transversal lightlike submanifold of indefinite Sasakian manifolds which includes radical and transversal lightlike submanifolds of indefinite Sasakian manifolds as its trivial subcases. A characteristic theorem and a classification theorem of generalized transversal lightlike submanifolds are obtained.


2015 ◽  
Vol 36 (7) ◽  
pp. 2107-2120
Author(s):  
ZOLTÁN BUCZOLICH ◽  
GABRIELLA KESZTHELYI

Suppose that $G$ is a compact Abelian topological group, $m$ is the Haar measure on $G$ and $f:G\rightarrow \mathbb{R}$ is a measurable function. Given $(n_{k})$, a strictly monotone increasing sequence of integers, we consider the non-conventional ergodic/Birkhoff averages $$\begin{eqnarray}M_{N}^{\unicode[STIX]{x1D6FC}}f(x)=\frac{1}{N+1}\mathop{\sum }_{k=0}^{N}f(x+n_{k}\unicode[STIX]{x1D6FC}).\end{eqnarray}$$ The $f$-rotation set is $$\begin{eqnarray}\unicode[STIX]{x1D6E4}_{f}=\{\unicode[STIX]{x1D6FC}\in G:M_{N}^{\unicode[STIX]{x1D6FC}}f(x)\text{ converges for }m\text{ almost every }x\text{ as }N\rightarrow \infty \}.\end{eqnarray}$$We prove that if $G$ is a compact locally connected Abelian group and $f:G\rightarrow \mathbb{R}$ is a measurable function then from $m(\unicode[STIX]{x1D6E4}_{f})>0$ it follows that $f\in L^{1}(G)$. A similar result is established for ordinary Birkhoff averages if $G=Z_{p}$, the group of $p$-adic integers. However, if the dual group, $\widehat{G}$, contains ‘infinitely many multiple torsion’ then such results do not hold if one considers non-conventional Birkhoff averages along ergodic sequences. What really matters in our results is the boundedness of the tail, $f(x+n_{k}\unicode[STIX]{x1D6FC})/k$, $k=1,\ldots ,$ for almost every $x$ for many $\unicode[STIX]{x1D6FC}$; hence, some of our theorems are stated by using instead of $\unicode[STIX]{x1D6E4}_{f}$ slightly larger sets, denoted by $\unicode[STIX]{x1D6E4}_{f,b}$.


1975 ◽  
Vol s2-11 (4) ◽  
pp. 474-480 ◽  
Author(s):  
Allan L. Edmonds ◽  
Ronald J. Stern

2017 ◽  
Vol 28 (08) ◽  
pp. 1750063 ◽  
Author(s):  
Samuele Mongodi ◽  
Zbigniew Slodkowski ◽  
Giuseppe Tomassini

In a previous work, we classified weakly complete surfaces which admit a real analytic plurisubharmonic exhaustion function; we showed that, if they are not proper over a Stein space, then they admit a pluriharmonic function, with compact Levi-flat level sets foliated with dense complex leaves. We called these Grauert type surfaces. In this note, we investigate some properties of these surfaces. Namely, we prove that the only compact curves that can be contained in them are negative in the sense of Grauert and that the level sets of the pluriharmonic function are connected, thus completing the analogy with the Cartan–Remmert reduction of a holomorphically convex space. Moreover, in our classification theorem, we had to pass to a double cover to produce the pluriharmonic function; the last part of the present paper is devoted to the construction of an example where passing to a double cover cannot be avoided.


1973 ◽  
Vol 9 (1) ◽  
pp. 73-82 ◽  
Author(s):  
U.B. Tewari ◽  
A.K. Gupta

Let G be a locally compact abelian group and Ĝ be its dual group. For 1 ≤ p < ∞, let Ap (G) denote the set of all those functions in L1(G) whose Fourier transforms belong to Lp (Ĝ). Let M(Ap (G)) denote the set of all functions φ belonging to L∞(Ĝ) such that is Fourier transform of an L1-function on G whenever f belongs to Ap (G). For 1 ≤ p < q < ∞, we prove that Ap (G) Aq(G) provided G is nondiscrete. As an application of this result we prove that if G is an infinite compact abelian group and 1 ≤ p ≤ 4 then lp (Ĝ) M(Ap(G)), and if p > 4 then there exists ψ є lp (Ĝ) such that ψ does not belong to M(Ap (G)).


1989 ◽  
Vol 31 (1) ◽  
pp. 31-47
Author(s):  
Baruch Solel

Let M be a σ-finite von Neumann algebra and α = {αt}t∈A be a representation of a compact abelian group A as *-automorphisms of M. Let Γ be the dual group of A and suppose that Γ is totally ordered with a positive semigroup Σ⊆Γ. The analytic algebra associated with α and Σ iswhere spα(a) is Arveson's spectrum. These algebras were studied (also for A not necessarily compact) by several authors starting with Loebl and Muhly [10].


Sign in / Sign up

Export Citation Format

Share Document