abelian topological group
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
A. Haddley ◽  
R. Nair

AbstractLet $${\mathcal {M}}$$ M denote the maximal ideal of the ring of integers of a non-Archimedean field K with residue class field k whose invertible elements, we denote $$k^{\times }$$ k × , and a uniformizer we denote $$\pi $$ π . In this paper, we consider the map $$T_{v}: {\mathcal {M}} \rightarrow {\mathcal {M}}$$ T v : M → M defined by $$\begin{aligned} T_v(x) = \frac{\pi ^{v(x)}}{x} - b(x), \end{aligned}$$ T v ( x ) = π v ( x ) x - b ( x ) , where b(x) denotes the equivalence class to which $$\frac{\pi ^{v(x)}}{x}$$ π v ( x ) x belongs in $$k^{\times }$$ k × . We show that $$T_v$$ T v preserves Haar measure $$\mu $$ μ on the compact abelian topological group $${\mathcal {M}}$$ M . Let $${\mathcal {B}}$$ B denote the Haar $$\sigma $$ σ -algebra on $${\mathcal {M}}$$ M . We show the natural extension of the dynamical system $$({\mathcal {M}}, {\mathcal {B}}, \mu , T_v)$$ ( M , B , μ , T v ) is Bernoulli and has entropy $$\frac{\#( k)}{\#( k^{\times })}\log (\#( k))$$ # ( k ) # ( k × ) log ( # ( k ) ) . The first of these two properties is used to study the average behaviour of the convergents arising from $$T_v$$ T v . Here for a finite set A its cardinality has been denoted by $$\# (A)$$ # ( A ) . In the case $$K = {\mathbb {Q}}_p$$ K = Q p , i.e. the field of p-adic numbers, the map $$T_v$$ T v reduces to the well-studied continued fraction map due to Schneider.


2019 ◽  
Vol 63 (3) ◽  
pp. 610-623 ◽  
Author(s):  
Arkady Leiderman ◽  
Mikhail Tkachenko

AbstractWe study the following problem: For which Tychonoff spaces $X$ do the free topological group $F(X)$ and the free abelian topological group $A(X)$ admit a quotient homomorphism onto a separable and nontrivial (i.e., not finitely generated) group? The existence of the required quotient homomorphisms is established for several important classes of spaces $X$, which include the class of pseudocompact spaces, the class of locally compact spaces, the class of $\unicode[STIX]{x1D70E}$-compact spaces, the class of connected locally connected spaces, and some others.We also show that there exists an infinite separable precompact topological abelian group $G$ such that every quotient of $G$ is either the one-point group or contains a dense non-separable subgroup and, hence, does not have a countable network.


2019 ◽  
Vol 100 (3) ◽  
pp. 453-457 ◽  
Author(s):  
SIDNEY A. MORRIS

The Banach–Mazur separable quotient problem asks whether every infinite-dimensional Banach space $B$ has a quotient space that is an infinite-dimensional separable Banach space. The question has remained open for over 80 years, although an affirmative answer is known in special cases such as when $B$ is reflexive or even a dual of a Banach space. Very recently, it has been shown to be true for dual-like spaces. An analogous problem for topological groups is: Does every infinite-dimensional (in the topological sense) connected (Hausdorff) topological group $G$ have a quotient topological group that is infinite dimensional and metrisable? While this is known to be true if $G$ is the underlying topological group of an infinite-dimensional Banach space, it is shown here to be false even if $G$ is the underlying topological group of an infinite-dimensional locally convex space. Indeed, it is shown that the free topological vector space on any countably infinite $k_{\unicode[STIX]{x1D714}}$-space is an infinite-dimensional toplogical vector space which does not have any quotient topological group that is infinite dimensional and metrisable. By contrast, the Graev free abelian topological group and the Graev free topological group on any infinite connected Tychonoff space, both of which are connected topological groups, are shown here to have the tubby torus $\mathbb{T}^{\unicode[STIX]{x1D714}}$, which is an infinite-dimensional metrisable group, as a quotient group.


Mathematika ◽  
2019 ◽  
Vol 65 (3) ◽  
pp. 708-718 ◽  
Author(s):  
Mikołaj Krupski ◽  
Arkady Leiderman ◽  
Sidney Morris

2018 ◽  
Vol 21 (4) ◽  
pp. 579-581
Author(s):  
Michal Doucha

AbstractWe provide a very short elementary proof that every separable abelian group with a bounded invariant metric isometrically embeds into a monothetic group with a bounded invariant metric, in such a way that the result of Morris and Pestov that every separable abelian topological group embeds into a monothetic group is an immediate corollary. We show that the boundedness assumption cannot be dropped.


2018 ◽  
Vol 30 (2) ◽  
pp. 295-320
Author(s):  
Dikran Dikranjan ◽  
Dmitri Shakhmatov

AbstractWe provide characterizations of Lie groups as compact-like groups in which all closed zero-dimensional metric (compact) subgroups are discrete. The “compact-like” properties we consider include (local) compactness, (local) ω-boundedness, (local) countable compactness, (local) precompactness, (local) minimality and sequential completeness. Below is A sample of our characterizations is as follows:(i) A topological group is a Lie group if and only if it is locally compact and has no infinite compact metric zero-dimensional subgroups.(ii) An abelian topological groupGis a Lie group if and only ifGis locally minimal, locally precompact and all closed metric zero-dimensional subgroups ofGare discrete.(iii) An abelian topological group is a compact Lie group if and only if it is minimal and has no infinite closed metric zero-dimensional subgroups.(iv) An infinite topological group is a compact Lie group if and only if it is sequentially complete, precompact, locally minimal, contains a non-empty open connected subset and all its compact metric zero-dimensional subgroups are finite.


2018 ◽  
Vol 9 (2) ◽  
pp. 198-201 ◽  
Author(s):  
T.V. Vasylyshyn

It is known that every complex-valued homomorphism of the Fréchet algebra $H_{bs}(L_\infty)$ of all entire symmetric functions of bounded type on the complex Banach space $L_\infty$ is a point-evaluation functional $\delta_x$ (defined by $\delta_x(f) = f(x)$ for $f \in H_{bs}(L_\infty)$) at some point $x \in L_\infty.$ Therefore, the spectrum (the set of all continuous complex-valued homomorphisms) $M_{bs}$ of the algebra $H_{bs}(L_\infty)$ is one-to-one with the quotient set $L_\infty/_\sim,$ where an equivalence relation "$\sim$'' on $L_\infty$ is defined by $x\sim y \Leftrightarrow \delta_x = \delta_y.$ Consequently, $M_{bs}$ can be endowed with the quotient topology. On the other hand, $M_{bs}$ has a natural representation as a set of sequences which endowed with the coordinate-wise addition and the quotient topology forms an Abelian topological group. We show that the topology on $M_{bs}$ is metrizable and it is induced by the metric $d(\xi, \eta) = \sup_{n\in\mathbb{N}}\sqrt[n]{|\xi_n-\eta_n|},$ where $\xi = \{\xi_n\}_{n=1}^\infty,\eta = \{\eta_n\}_{n=1}^\infty \in M_{bs}.$


2017 ◽  
Vol 97 (1) ◽  
pp. 110-118 ◽  
Author(s):  
SAAK S. GABRIYELYAN ◽  
SIDNEY A. MORRIS

For a Tychonoff space $X$, let $\mathbb{V}(X)$ be the free topological vector space over $X$, $A(X)$ the free abelian topological group over $X$ and $\mathbb{I}$ the unit interval with its usual topology. It is proved here that if $X$ is a subspace of $\mathbb{I}$, then the following are equivalent: $\mathbb{V}(X)$ can be embedded in $\mathbb{V}(\mathbb{I})$ as a topological vector subspace; $A(X)$ can be embedded in $A(\mathbb{I})$ as a topological subgroup; $X$ is locally compact.


2017 ◽  
Vol 9 (1) ◽  
pp. 22-27 ◽  
Author(s):  
T.V. Vasylyshyn

It is known that the so-called elementary symmetric polynomials $R_n(x) = \int_{[0,1]}(x(t))^n\,dt$ form an algebraic basis in the algebra of all symmetric continuous polynomials on the complex Banach space $L_\infty,$ which is dense in the Fr\'{e}chet algebra $H_{bs}(L_\infty)$ of all entire symmetric functions of bounded  type on $L_\infty.$ Consequently, every continuous homomorphism $\varphi: H_{bs}(L_\infty) \to \mathbb{C}$ is uniquely determined by the sequence $\{\varphi(R_n)\}_{n=1}^\infty.$ By the continuity of the homomorphism $\varphi,$ the sequence $\{\sqrt[n]{|\varphi(R_n)|}\}_{n=1}^\infty$ is bounded. On the other hand, for every sequence $\{\xi_n\}_{n=1}^\infty \subset \mathbb{C},$ such that the sequence $\{\sqrt[n]{|\xi_n|}\}_{n=1}^\infty$ is bounded,  there exists  $x_\xi \in L_\infty$ such that $R_n(x_\xi) = \xi_n$ for every $n \in \mathbb{N}.$ Therefore, for the point-evaluation functional $\delta_{x_\xi}$ we have $\delta_{x_\xi}(R_n) = \xi_n$ for every $n \in \mathbb{N}.$ Thus, every continuous complex-valued homomorphism of $H_{bs}(L_\infty)$ is a point-evaluation functional at some point of $L_\infty.$ Note that such a point is not unique. We can consider an equivalence relation on $L_\infty,$ defined by $x\sim y \Leftrightarrow \delta_x = \delta_y.$ The spectrum (the set of all continuous complex-valued homomorphisms) $M_{bs}$ of the algebra $H_{bs}(L_\infty)$ is one-to-one with the quotient set $L_\infty/_\sim.$ Consequently, $M_{bs}$ can be endowed with the quotient topology. On the other hand, it is naturally to identify $M_{bs}$ with the set of all sequences $\{\xi_n\}_{n=1}^\infty \subset \mathbb{C}$ such that the sequence $\{\sqrt[n]{|\xi_n|}\}_{n=1}^\infty$ is bounded.We show that the quotient topology is Hausdorffand that $M_{bs}$ with the operation of coordinate-wise addition of sequences forms an abelian topological group.


2017 ◽  
Vol 18 (6) ◽  
pp. 58-65
Author(s):  
T.A. Sribnaya

The uniform exhaustivity criteria are proved for a sequence of exhaustive outer measures defined on the non-sigma-complete class of sets and taking values in an Abelian topological group.


Sign in / Sign up

Export Citation Format

Share Document