Galois Groups of Algebraic Extensions of Infinite Degree

Author(s):  
Paulo Ribenboim
2005 ◽  
Vol 16 (06) ◽  
pp. 567-593
Author(s):  
T. M. GENDRON ◽  
A. VERJOVSKY

This paper concerns the description of holomorphic extensions of algebraic number fields. After expanding the notion of adele class group to number fields of infinite degree over ℚ, a hyperbolized adele class group [Formula: see text] is assigned to every number field K/ℚ. The projectivization of the Hardy space ℙ𝖧•[K] of graded-holomorphic functions on [Formula: see text] possesses two operations ⊕ and ⊗ giving it the structure of a nonlinear field extension of K. We show that the Galois theory of these nonlinear number fields coincides with their discrete counterparts in that 𝖦𝖺𝗅(ℙ𝖧•[K]/K) = 1 and 𝖦𝖺𝗅(ℙ𝖧•[L]/ℙ𝖧•[K]) ≅ 𝖦𝖺𝗅(L/K) if L/K is Galois. If K ab denotes the maximal abelian extension of K and 𝖢K is the idele class group, it is shown that there are embeddings of 𝖢K into 𝖦𝖺𝗅⊕(ℙ𝖧•[K ab ]/K) and 𝖦𝖺𝗅⊗(ℙ𝖧•[K ab ]/K), the "Galois groups" of automorphisms preserving ⊕ (respectively, ⊗) only.


1981 ◽  
Vol 46 (2) ◽  
pp. 385-392 ◽  
Author(s):  
Peter La Roche

Krull [4] extended Galois theory to arbitrary normal extensions, in which the Galois groups are precisely the profinite groups (i.e. totally disconnected, compact, Hausdorff groups). Metakides and Nerode [7] produced two recursively presented algebraic extensionsK⊂Fof the rationals such thatFis abelian,Fis of infinite degree overK, and the Galois group ofFoverK, although of cardinalityc, has only one recursive element (viz. the identity). This indicated the limits of effectiveness for Krull's theory. (The Galois theory offiniteextensions is completely effective.) Nerode suggested developing a natural effective version of Krull's theory (done here in §1).It is evident from the classical literature that the free profinite group on denumerably many generators can be obtained effectively as the Galois group of a recursive extension of the rationals over a subfield. Nerode conjectured that it could be obtained effectively as the Galois group of the algebraic numbers over a suitable subfield (done here in §2). The case of finitely many generators was done non-effectively by Jarden [3]. The author believes that the denumerable case, as presented in §2, is also new classically. Using this result and the effective Krull theory, every “co-recursively enumerable” profinite group is effectively the Galois group of a recursively enumerable field of algebraic numbers over a recursive subfield.


1997 ◽  
Vol 225 (2) ◽  
pp. 245-261 ◽  
Author(s):  
Ido Efrat
Keyword(s):  

1987 ◽  
Vol 87 (1) ◽  
pp. 13-61 ◽  
Author(s):  
Nicholas M. Katz
Keyword(s):  

2017 ◽  
Vol 18 (4) ◽  
pp. 867-890 ◽  
Author(s):  
Jonathan D. Hauenstein ◽  
Jose Israel Rodriguez ◽  
Frank Sottile

Sign in / Sign up

Export Citation Format

Share Document