Analytic Aspects of the Harmonic Map Problem

Author(s):  
Richard M. Schoen
Keyword(s):  
2021 ◽  
Vol 143 (4) ◽  
pp. 1261-1335
Author(s):  
Yannick Sire ◽  
Juncheng Wei ◽  
Youquan Zheng

Author(s):  
Ahmad Afuni

AbstractWe establish new local regularity results for the harmonic map and Yang–Mills heat flows on Riemannian manifolds of dimension greater than 2 and 4, respectively, obtaining criteria for the smooth local extensibility of these flows. As a corollary, we obtain new characterisations of singularity formation and use this to obtain a local estimate on the Hausdorff measure of the singular sets of these flows at the first singular time. Finally, we show that smooth blow-ups at rapidly forming singularities of these flows are necessarily nontrivial and admit a positive lower bound on their heat ball energies. These results crucially depend on some local monotonicity formulæ for these flows recently established by Ecker (Calc Var Partial Differ Equ 23(1):67–81, 2005) and the Afuni (Calc Var 555(1):1–14, 2016; Adv Calc Var 12(2):135–156, 2019).


Author(s):  
Christine Breiner ◽  
Chikako Mese

Abstract Let S be a surface with a metric d satisfying an upper curvature bound in the sense of Alexandrov (i.e. via triangle comparison). We show that an almost conformal harmonic map from a surface into ( S , d ) {(S,d)} is a branched covering. As a consequence, if ( S , d ) {(S,d)} is homeomorphically equivalent to the 2-sphere 𝕊 2 {\mathbb{S}^{2}} , then it is conformally equivalent to 𝕊 2 {\mathbb{S}^{2}} .


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
James Kohout ◽  
Melanie Rupflin ◽  
Peter M. Topping

AbstractThe harmonic map energy of a map from a closed, constant-curvature surface to a closed target manifold can be seen as a functional on the space of maps and domain metrics. We consider the gradient flow for this energy. In the absence of singularities, previous theory established that the flow converges to a branched minimal immersion, but only at a sequence of times converging to infinity, and only after pulling back by a sequence of diffeomorphisms. In this paper, we investigate whether it is necessary to pull back by these diffeomorphisms, and whether the convergence is uniform as {t\to\infty}.


Nonlinearity ◽  
2020 ◽  
Vol 33 (6) ◽  
pp. 2756-2796
Author(s):  
Paweł Biernat ◽  
Yukihiro Seki

1994 ◽  
Vol 36 (1) ◽  
pp. 77-80 ◽  
Author(s):  
Leung-Fu Cheung ◽  
Pui-Fai Leung

For each p ∈ [2, ∞)a p-harmonic map f:Mm→Nn is a critical point of the p-energy functionalwhere Mm is a compact and Nn a complete Riemannian manifold of dimensions m and n respectively. In a recent paper [3], Takeuchi has proved that for a certain class of simply-connected δ-pinched Nn and certain type of hypersurface Nn in ℝn+1, the only stable p-harmonic maps for any compact Mm are the constant maps. Our purpose in this note is to establish the following theorem which complements Takeuchi's results.


2012 ◽  
Vol 23 (03) ◽  
pp. 1250003 ◽  
Author(s):  
QUN CHEN ◽  
WUBIN ZHOU

The main purpose of this paper is to study the properties of transversally harmonic maps by using Bochner-type formulas. As an application, we obtain the following theorem between compact Sasaki manifolds: Let f be a transversally harmonic map from compact Sasaki manifold M to compact Sasaki manifold M′, and M′ has a strongly negative transverse curvature. If the rank of dTf is at least three at some points of M, then f is contact holomorphic (or contact anti-holomorphic).


2005 ◽  
Vol 39 (4) ◽  
pp. 781-796
Author(s):  
Benoit Merlet ◽  
Morgan Pierre

2013 ◽  
Vol 244 ◽  
pp. 874-893 ◽  
Author(s):  
Melanie Rupflin ◽  
Peter M. Topping ◽  
Miaomiao Zhu

Sign in / Sign up

Export Citation Format

Share Document