scholarly journals Local Regularity for the Harmonic Map and Yang–Mills Heat Flows

Author(s):  
Ahmad Afuni

AbstractWe establish new local regularity results for the harmonic map and Yang–Mills heat flows on Riemannian manifolds of dimension greater than 2 and 4, respectively, obtaining criteria for the smooth local extensibility of these flows. As a corollary, we obtain new characterisations of singularity formation and use this to obtain a local estimate on the Hausdorff measure of the singular sets of these flows at the first singular time. Finally, we show that smooth blow-ups at rapidly forming singularities of these flows are necessarily nontrivial and admit a positive lower bound on their heat ball energies. These results crucially depend on some local monotonicity formulæ for these flows recently established by Ecker (Calc Var Partial Differ Equ 23(1):67–81, 2005) and the Afuni (Calc Var 555(1):1–14, 2016; Adv Calc Var 12(2):135–156, 2019).

2019 ◽  
Vol 12 (2) ◽  
pp. 135-156 ◽  
Author(s):  
Ahmad Afuni

AbstractWe establish a local monotonicity identity for vector bundle-valued differential k-forms on superlevel sets of appropriate heat kernel-like functions. As a consequence, we obtain new local monotonicity formulæ for the harmonic map and Yang–Mills heat flows on evolving manifolds. We also show how these methods yield local monotonicity formulæ for the Yang–Mills–Higgs flow.


2018 ◽  
Vol 11 (3) ◽  
pp. 223-255 ◽  
Author(s):  
Masashi Misawa

AbstractWe study a geometric analysis and local regularity for the evolution of {{p}}-harmonic maps, called {{p}}-harmonic map heat flows. Our main result is to establish a criterion for a uniform local regularity estimate for regular {{p}}-harmonic map heat flows, devising some new monotonicity-type formulas of a local scaled energy. The regularity criterion obtained is almost optimal, comparing with that of the corresponding stationary case. As application we show a compactness of regular {{p}}-harmonic map heat flows with energy bound.


Author(s):  
Qun Chen

AbstractLet M, N be Riemannian manifolds, f: M → N a harmonic map with potential H, namely, a smooth critical point of the functional EH(f) = ∫M[e(f)−H(f)], where e(f) is the energy density of f. Some results concerning the stability of these maps between spheres and any Riemannian manifold are given. For a general class of M, this paper also gives a result on the constant boundary-value problem which generalizes the result of Karcher-Wood even in the case of the usual harmonic maps. It can also be applied to the static Landau-Lifshitz equations.


Sign in / Sign up

Export Citation Format

Share Document