singular sets
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 18)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
B.I. Abdullaev ◽  
S.A. Imomkulov ◽  
R.A. Sharipov

In this paper, we survey the recent results on removable singular sets for the classes of $m$-subharmonic ($m-sh$) and strongly $m$-subharmonic ($sh_m$), as well as $\alpha$-subharmonic functions, which are applied to study the singular sets of $sh_{m}$ functions. In particular, for strongly $m$-subharmonic functions from the class $L_{loc}^{p}$, it is proved that a set is a removable singular set if it has zero $C_{q,s}$-capacity. The proof of this statement is based on the fact that the space of basic functions, supported on the set $D\backslash E$, is dense in the space of test functions defined in the set $D$ on the $L_{q}^{s}$-norm. Similar results in the case of classical (sub)harmonic functions were studied in the works by L. Carleson, E. Dolzhenko, M. Blanchet, S. Gardiner, J. Riihentaus, V. Shapiro, A. Sadullaev and Zh. Yarmetov, B. Abdullaev and S. Imomkulov.


Author(s):  
Ahmad Afuni

AbstractWe establish new local regularity results for the harmonic map and Yang–Mills heat flows on Riemannian manifolds of dimension greater than 2 and 4, respectively, obtaining criteria for the smooth local extensibility of these flows. As a corollary, we obtain new characterisations of singularity formation and use this to obtain a local estimate on the Hausdorff measure of the singular sets of these flows at the first singular time. Finally, we show that smooth blow-ups at rapidly forming singularities of these flows are necessarily nontrivial and admit a positive lower bound on their heat ball energies. These results crucially depend on some local monotonicity formulæ for these flows recently established by Ecker (Calc Var Partial Differ Equ 23(1):67–81, 2005) and the Afuni (Calc Var 555(1):1–14, 2016; Adv Calc Var 12(2):135–156, 2019).


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Riccardo March ◽  
Giuseppe Riey

<p style='text-indent:20px;'>We compute the Euler equations of a functional useful for simultaneous video inpainting and motion estimation, which was obtained in [<xref ref-type="bibr" rid="b17">17</xref>] as the relaxation of a modified version of the functional proposed in [<xref ref-type="bibr" rid="b16">16</xref>]. The functional is defined on vectorial functions of bounded variations, therefore we also get the Euler equations holding on the singular sets of minimizers, highlighting in particular the conditions on the jump sets. Such conditions are expressed by means of traces of geometrically meaningful vector fields and characterized as pointwise limits of averages on cylinders with axes parallel to the unit normals to the jump sets.</p>


2020 ◽  
Vol 30 (6) ◽  
pp. 1465-1530
Author(s):  
Anna Miriam Benini ◽  
Lasse Rempe

AbstractThe Douady-Hubbard landing theorem for periodic external rays is one of the cornerstones of the study of polynomial dynamics. It states that, for a complex polynomial f with bounded postcritical set, every periodic external ray lands at a repelling or parabolic periodic point, and conversely every repelling or parabolic point is the landing point of at least one periodic external ray. We prove an analogue of this theorem for an entire function f with bounded postsingular set. If f has finite order of growth, then it is known that the escaping set I(f) contains certain curves called periodic hairs; we show that every periodic hair lands at a repelling or parabolic periodic point, and conversely every repelling or parabolic periodic point is the landing point of at least one periodic hair. For a postsingularly bounded entire function f of infinite order, such hairs may not exist. Therefore we introduce certain dynamically natural connected subsets of I(f), called dreadlocks. We show that every periodic dreadlock lands at a repelling or parabolic periodic point, and conversely every repelling or parabolic periodic point is the landing point of at least one periodic dreadlock. More generally, we prove that every point of a hyperbolic set is the landing point of a dreadlock.


Sign in / Sign up

Export Citation Format

Share Document