Neural Networks as Dynamical Systems

Author(s):  
Clark Jeffries
2021 ◽  
pp. 1-35
Author(s):  
Aaron R. Voelker ◽  
Peter Blouw ◽  
Xuan Choo ◽  
Nicole Sandra-Yaffa Dumont ◽  
Terrence C. Stewart ◽  
...  

Abstract While neural networks are highly effective at learning task-relevant representations from data, they typically do not learn representations with the kind of symbolic structure that is hypothesized to support high-level cognitive processes, nor do they naturally model such structures within problem domains that are continuous in space and time. To fill these gaps, this work exploits a method for defining vector representations that bind discrete (symbol-like) entities to points in continuous topological spaces in order to simulate and predict the behavior of a range of dynamical systems. These vector representations are spatial semantic pointers (SSPs), and we demonstrate that they can (1) be used to model dynamical systems involving multiple objects represented in a symbol-like manner and (2) be integrated with deep neural networks to predict the future of physical trajectories. These results help unify what have traditionally appeared to be disparate approaches in machine learning.


Author(s):  
Daniela Danciu

Neural networks—both natural and artificial, are characterized by two kinds of dynamics. The first one is concerned with what we would call “learning dynamics”. The second one is the intrinsic dynamics of the neural network viewed as a dynamical system after the weights have been established via learning. The chapter deals with the second kind of dynamics. More precisely, since the emergent computational capabilities of a recurrent neural network can be achieved provided it has suitable dynamical properties when viewed as a system with several equilibria, the chapter deals with those qualitative properties connected to the achievement of such dynamical properties as global asymptotics and gradient-like behavior. In the case of the neural networks with delays, these aspects are reformulated in accordance with the state of the art of the theory of time delay dynamical systems.


Sign in / Sign up

Export Citation Format

Share Document