scholarly journals Cycles for Asymptotic Solutions and the Weyl Group

Author(s):  
A. Kazarnovski Krol
1991 ◽  
Vol 56 (1) ◽  
pp. 42-59 ◽  
Author(s):  
María-Luisa Alcaraz ◽  
Jesús Gálvez

Equations for a potentiostatic reaction with an adsorption process following Langmuir’s isotherm have been derived for the expanding sphere with any power law electrode model. This model is very general and includes, among others, the following ones: (a) stationary plane; (b) stationary sphere; (c) expanding plane; and (d) expanding sphere. Characteristics of these solutions and the behavior of the corresponding asymptotic solutions are discussed. A comparison of the results obtained for plane and spherical electrodes has also been performed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Colin Defant ◽  
Sam Hopkins

Abstract For a Weyl group W of rank r, the W-Catalan number is the number of antichains of the poset of positive roots, and the W-Narayana numbers refine the W-Catalan number by keeping track of the cardinalities of these antichains. The W-Narayana numbers are symmetric – that is, the number of antichains of cardinality k is the same as the number of cardinality $r-k$ . However, this symmetry is far from obvious. Panyushev posed the problem of defining an involution on root poset antichains that exhibits the symmetry of the W-Narayana numbers. Rowmotion and rowvacuation are two related operators, defined as compositions of toggles, that give a dihedral action on the set of antichains of any ranked poset. Rowmotion acting on root posets has been the subject of a significant amount of research in the recent past. We prove that for the root posets of classical types, rowvacuation is Panyushev’s desired involution.


2005 ◽  
Vol 48 (2) ◽  
pp. 203-230 ◽  
Author(s):  
Takao Suzuki

Author(s):  
Rosa Winter ◽  
Ronald van Luijk

AbstractLet $$\varGamma $$ Γ be the graph on the roots of the $$E_8$$ E 8 root system, where any two distinct vertices e and f are connected by an edge with color equal to the inner product of e and f. For any set c of colors, let $$\varGamma _c$$ Γ c be the subgraph of $$\varGamma $$ Γ consisting of all the 240 vertices, and all the edges whose color lies in c. We consider cliques, i.e., complete subgraphs, of $$\varGamma $$ Γ that are either monochromatic, or of size at most 3, or a maximal clique in $$\varGamma _c$$ Γ c for some color set c, or whose vertices are the vertices of a face of the $$E_8$$ E 8 root polytope. We prove that, apart from two exceptions, two such cliques are conjugate under the automorphism group of $$\varGamma $$ Γ if and only if they are isomorphic as colored graphs. Moreover, for an isomorphism f from one such clique K to another, we give necessary and sufficient conditions for f to extend to an automorphism of $$\varGamma $$ Γ , in terms of the restrictions of f to certain special subgraphs of K of size at most 7.


2021 ◽  
Vol 383 ◽  
pp. 107688
Author(s):  
Jeffrey Adams ◽  
Xuhua He ◽  
Sian Nie

1994 ◽  
Vol 37 (3) ◽  
pp. 338-345 ◽  
Author(s):  
D. Ž. Doković ◽  
P. Check ◽  
J.-Y. Hée

AbstractLet R be a root system (in the sense of Bourbaki) in a finite dimensional real inner product space V. A subset P ⊂ R is closed if α, β ∊ P and α + β ∊ R imply that α + β ∊ P. In this paper we shall classify, up to conjugacy by the Weyl group W of R, all closed sets P ⊂ R such that R\P is also closed. We also show that if θ:R —> R′ is a bijection between two root systems such that both θ and θ-1 preserve closed sets, and if R has at most one irreducible component of type A1, then θ is an isomorphism of root systems.


Sign in / Sign up

Export Citation Format

Share Document