adsorption process
Recently Published Documents


TOTAL DOCUMENTS

2477
(FIVE YEARS 988)

H-INDEX

48
(FIVE YEARS 10)

2022 ◽  
Vol 12 (2) ◽  
pp. 879
Author(s):  
Suleiman Nafiu ◽  
Vitus Atanga Apalangya ◽  
Abu Yaya ◽  
Edward Benjamin Sabi

The electrical properties and characteristics of the armchair boron nitride nanotube (BNNT) that interacts with the curcumin molecule as an anticancer drug were studied using ab initio calculations based on density functional theory (DFT). In this study, a (5,5) armchair BNNT was employed, and two different interactions were investigated, including the interaction of the curcumin molecule with the outer and inner surfaces of the BNNT. The adsorption of curcumin molecules on the investigated BNNT inside the surface is a more favorable process than adsorption on the outside surface, and the more persistent and stronger connection correlates with curcumin molecule adsorption in this case. Furthermore, analysis of the HOMO–LUMO gap after the adsorption process showed that the HOMO value increased marginally while the LUMO value decreased dramatically in the curcumin-BNNT complexes. As a result, the energy gaps between HOMO and LUMO (Eg) are narrowed, emphasizing the stronger intermolecular bonds. As a result, BNNTs can be employed as a drug carrier in biological systems to transport curcumin, an anticancer medication, and thereby improve its bioavailability.


Author(s):  
Yan Sun ◽  
Xiaojun Song ◽  
Jing Ma ◽  
Haochen Yu ◽  
Gangjun Liu ◽  
...  

The polyacrylonitrile/fly ash composite was synthesized through solution polymerization and was modified with NH2OH·HCl. The amidoxime-modified polyacrylonitrile/fly ash composite demonstrated excellent adsorption capacity for Zn2+ in an aqueous medium. Fourier transform-Infrared spectroscopy, thermogravimetric analysis, nitrogen adsorption, X-ray diffraction, and scanning electron microscopy were used to characterize the prepared materials. The results showed that the resulting amidoxime-modified polyacrylonitrile/fly ash composite was able to effectively remove Zn2+ at pH 4–6. Adsorption of Zn2+ was hindered by the coexisting cations. The adsorption kinetics of Zn2+ by Zn2+ followed the pseudo-second order kinetic model. The adsorption process also satisfactorily fit the Langmuir model, and the adsorption process was mainly single layer. The Gibbs free energy ΔG0, ΔH0, and ΔS0 were negative, indicating the adsorption was a spontaneous, exothermic, and high degree of order in solution system.


2022 ◽  
Vol 7 (2) ◽  
Author(s):  
Mohamed Damej ◽  
Abdu Molhi ◽  
Kawtar Tassaoui ◽  
Brahim El Ibrahimi ◽  
Zahra Akounach ◽  
...  

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 271
Author(s):  
Nouf F. Al-Harby ◽  
Ebtehal F. Albahly ◽  
Nadia A. Mohamed

Novel Uracil-modified chitosan (UCs) adsorbent has successfully been synthesized through a four-step method during which the amino groups of chitosan have been protected, then epoxy nuclei have been incorporated, afterwards the latter have been opened using 6-amino-1,3-dimethyl uracil, and finally the amino groups have been regained via removing the protection. Its structure was checked using FTIR, XRD and SEM techniques. The adsorption capacity of UCs for anionic Congo Red (CR) dye was studied under various conditions. It decreased significantly with increasing the solution pH value and dye concentration, while increased with increasing temperature. The adsorption of UCs for CR dye at different temperatures, solution pH and dye concentrations fitted to the kinetic model of pseudo-second order and Elovich model. The intraparticle diffusion model showed that the adsorption process involves multi-step process. The isotherm of CR dye adsorption by UCs conforms to the Langmuir isotherm model indicating the monolayer nature of adsorption. The maximum monolayer coverage capacity, qmax, was 434.78 mg g−1. Studying the thermodynamic showed that the adsorption of CR dye onto UCs was endothermic as illustrated from the positive value of enthalpy (21.37 kJ mol−1). According to the values of ΔG°, the adsorption process was spontaneous at all selected temperatures. The value of ΔS° showed an increase in randomness for the adsorption of CR dye by UCs. The value of activation energy was 18.40 kJ mol−1.


2022 ◽  
Author(s):  
Mahboobeh Monjezi ◽  
Vahid Javanbakht

Abstract Geopolymers as sustainable and environmentally friendly “green materials”, can be synthesized by utilizing waste material and by-products. A porous geopolymer foam adsorbent based on ZSM-5 zeolite was prepared using templating emulsion/chemical foaming method in different conditions and used for dye removal in batch and continuous systems. The parameters affecting the dye adsorption including temperature, concentration, and pH, kinetics, isotherm, and thermodynamics of the process were investigated. The results of the geopolymer foam synthesis showed that thermal pretreatment of the zeolite has a positive effect on the strength and adsorption capacity. Moreover, the increase in sodium silicate more than the stoichiometric reduces the strength and adsorption capacity. The findings obtained from the batch adsorption process showed that the adsorption kinetics of the pseudo-second-order model and the adsorption isotherm of the Temkin model is adjusted with the experimental data. Thermodynamic results indicated that the process of dye adsorption with geopolymer foam is exothermic. The results from continuous experiments indicated more compatibility of the adsorption process with the models of Thomas and Bohart-Adams. The maximum adsorption capacity of methylene blue in batch and continuous processes was 9.82 and 8.17 mg/g. The adsorbent reduction was performed successfully by chemical and thermal processes.


Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 80
Author(s):  
N. G. Picazo-Rodríguez ◽  
F. R. Carrillo-Pedroza ◽  
Ma de Jesús Soria-Aguilar ◽  
Gabriela Baltierra ◽  
Gregorio González ◽  
...  

Jarosites are residues generated during the purification of zinc and are composed mainly of iron sulfates ((Na, K)Fe3(SO4)2(OH)6). Due to the large volume of jarosite generated during the process, these residues tend to be deposited in large land areas and are not used. In the present work, jarosite was used without heat treatment (JST) as an adsorbent of hexavalent chromium contained in a sample of wastewater from a chrome plating industry under the following conditions: C0 = 200 mg/L of Cr, T = 25 °C, and pH = 3. It was only possible to remove 34% of Cr (VI). Subsequently, a thermal treatment of a jarosite sample (JTT) was carried out at 600 °C. The heat-treated sample was later used as an adsorbent in the same conditions as those for JST. The maximum chromium removal was 53%, and the adsorption capacity was 10.99 mg/g. The experimental data were fitted to the Langmuir model and to the pseudo-second-order kinetic model. It was determined that the adsorption process involved electrostatic attractions between the surface of the positively charged adsorbent and the chromium anions contained in industrial wastewater.


2022 ◽  
Author(s):  
Chuqing Yao ◽  
Yaodong Dai ◽  
Shuquan Chang ◽  
Haiqian Zhang

Abstract In this work, novel Prussian blue tetragonal nanorods were prepared by template-free solvothermal methods for removal of radionuclide Cs and Sr. It was worth that Prussian blue nanorods exhibited the better adsorption performance than co-precipitation PB or Prussian blue analogue composites. Thermodynamic analysis implied that adsorption process was spontaneous and endothermic which was described well with Langmuir isotherm and pseudo-second-order equation, the maximum adsorption capacity of PB nanorod was estimated to be 194.26 mg g-1 and 256.62 mg g-1 for Cs+ and Sr2+. The adsorption mechanism of Cs+ and Sr2+ was studied by X-ray photoelectron spectroscopy, X-ray diffraction and 57Fe Mössbaure spectroscopy, the results revealed that Cs+ entered in PB crystal to generate a new phase, the most of Sr2+ was trapped in internal crystal and the other exchanged Fe2+. Furthermore, the effect of co-existing ions and pH for PB adsorption process were also investigated. The results suggest that PB nanorods were outstanding candidate for removal of Cs+ and Sr2+ from radioactive wastewater.


AIChE Journal ◽  
2022 ◽  
Author(s):  
Yalou Guo ◽  
Vincent Jusko ◽  
Gongkui Xiao ◽  
Jurgen Hanekom ◽  
Guoping Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document