Computation of the Stability Condition

Author(s):  
J. E. Marsden ◽  
M. McCracken
Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1447
Author(s):  
Jose P. Suárez ◽  
Agustín Trujillo ◽  
Tania Moreno

Showing whether the longest-edge (LE) bisection of tetrahedra meshes degenerates the stability condition or not is still an open problem. Some reasons, in part, are due to the cost for achieving the computation of similarity classes of millions of tetrahedra. We prove the existence of tetrahedra where the LE bisection introduces, at most, 37 similarity classes. This family of new tetrahedra was roughly pointed out by Adler in 1983. However, as far as we know, there has been no evidence confirming its existence. We also introduce a new data structure and algorithm for computing the number of similarity tetrahedral classes based on integer arithmetic, storing only the square of edges. The algorithm lets us perform compact and efficient high-level similarity class computations with a cost that is only dependent on the number of similarity classes.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
H. Saberi Najafi ◽  
A. Refahi Sheikhani ◽  
A. Ansari

We analyze the stability of three classes of distributed order fractional differential equations (DOFDEs) with respect to the nonnegative density function. In this sense, we discover a robust stability condition for these systems based on characteristic function and new inertia concept of a matrix with respect to the density function. Moreover, we check the stability of a distributed order fractional WINDMI system to illustrate the validity of proposed procedure.


1981 ◽  
Vol 13 (3) ◽  
pp. 464-497 ◽  
Author(s):  
David Tanny

This paper is concerned with the growth of multitype branching processes in a random environment (mbpre). It is shown that, under suitable regularity conditions, the process either explodes of becomes extinct. A classification theorem is given delineating the cases of explosion or extinction. Furthermore, it is shown that the process grows at an exponential rate on its set of non-extinction provided the process is stable. Criteria is given for non-certain extinction of the mbpre to occur, and an example shows that the stability condition cannot be removed. The method of proof used, in general, is direct probabilistic computation rather than the classical functional iteration techniques. Growth theorems are first proved for increasing mbpre and subsequently transferred to general mbpre using the associated mbpre and the reduced mbpre.


2021 ◽  
Vol 18 (01) ◽  
pp. 195-219
Author(s):  
Yoshihiro Ueda

This paper is concerned with the dissipative structure for the linear symmetric hyperbolic system with non-symmetric relaxation. If the relaxation matrix of the system has symmetric property, Shizuta and Kawashima in 1985 introduced the suitable stability condition called Classical Stability Condition in this paper, and Umeda, Kawashima and Shizuta in 1984 analyzed the dissipative structure of the standard type. On the other hand, Ueda, Duan and Kawashima in 2012 and 2018 focused on the system with non-symmetric relaxation, and got the partial result which is the extension of known results. Furthermore, they argued the new dissipative structure called the regularity-loss type. In this situation, our purpose of this paper is to extend the stability theory introduced by Shizuta and Kawashima in 1985 and Umeda, Kawashima and Shizuta in 1984 for our general system.


1963 ◽  
Vol 41 (12) ◽  
pp. 2166-2173 ◽  
Author(s):  
J. S. Kirkaldy ◽  
D. Weichert ◽  
Zia-Ul- Haq

The second law requirement that the Onsager L matrix for isothermal diffusion in a stable solution be positive definite and the stability condition for such a solution that the Hessian of the Gibb's free energy be positive definite impose on the diffusion D matrix the condition that it always have real and positive eigenvalues. This condition ensures that solutions of the differential equations for diffusion will always relax in a nonperiodic way.


2005 ◽  
Vol 42 (01) ◽  
pp. 199-222 ◽  
Author(s):  
Yutaka Sakuma ◽  
Masakiyo Miyazawa

We consider a two-node Jackson network in which the buffer of node 1 is truncated. Our interest is in the limit of the tail decay rate of the queue-length distribution of node 2 when the buffer size of node 1 goes to infinity, provided that the stability condition of the unlimited network is satisfied. We show that there can be three different cases for the limit. This generalizes some recent results obtained for the tandem Jackson network. Special cases and some numerical examples are also presented.


Sign in / Sign up

Export Citation Format

Share Document