Perturbation Finite Element Method of Electromagnetic Field Calculation for Eddy-Current Coupling

Author(s):  
Li Biao
Author(s):  
K. Komeza ◽  
S. Wiak

This paper deals with the field and leakage reactance calculations in the model leakage transformer. The approximate solution for 3‐D problem, made by composing 2‐D solutions for 3‐D solution, is applied. Hermitian hierarchical finite elements have been successfully applied to the field and reactance computation of the transformer. The computational results have been reported and compared with measurement giving the error not greater than 10%.


Author(s):  
Karl Hollaus

Purpose The simulation of eddy currents in laminated iron cores by the finite element method (FEM) is of great interest in the design of electrical devices. Modeling each laminate by finite elements leads to extremely large nonlinear systems of equations impossible to solve with present computer resources reasonably. The purpose of this study is to show that the multiscale finite element method (MSFEM) overcomes this difficulty. Design/methodology/approach A new MSFEM approach for eddy currents of laminated nonlinear iron cores in three dimensions based on the magnetic vector potential is presented. How to construct the MSFEM approach in principal is shown. The MSFEM with the Biot–Savart field in the frequency domain, a higher-order approach, the time stepping method and with the harmonic balance method are introduced and studied. Findings Various simulations demonstrate the feasibility, efficiency and versatility of the new MSFEM. Originality/value The novel MSFEM solves true three-dimensional eddy current problems in laminated iron cores taking into account of the edge effect.


2018 ◽  
Vol 7 (3.6) ◽  
pp. 30 ◽  
Author(s):  
C Vinothraj ◽  
N Praveen Kumar ◽  
T B. Isha

Diagnosis of faults in induction motor is an indispensable process in industries to improve the reliability of the machine and reduce the financial loss. Among the various faults occurring in induction motors (IM), bearing fault is the predominant one which covers nearly 60% of faults. In this paper, a study of the electromagnetic field of an induction motor with bearing fault fed from both the mains and a three phase voltage source PWM inverter in open loop is carried out using Finite element method (FEM). Electromagnetic field parameters like flux lines distribution, flux density distribution and radial air gapflux density are analyzed. The presence of bearing fault can be detected from the spatial FFT spectrum of radial air gap flux density. From the FFT spectrum, it is seen that the amplitude of fundamental component of radial air gap flux density decreases and those around 100 mm distance increases with the severity of fault.  


Sign in / Sign up

Export Citation Format

Share Document