magnetic torque
Recently Published Documents


TOTAL DOCUMENTS

231
(FIVE YEARS 30)

H-INDEX

24
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Tinotenda Gwisai ◽  
Nima Mirkhani ◽  
Michael G Christiansen ◽  
Thuy Trinh Nguyen ◽  
Vincent Ling ◽  
...  

Bacterial microrobots combining self-propulsion and magnetic guidance are increasingly recognized as promising drug delivery vehicles for targeted cancer therapy. Thus far, control strategies have either relied on poorly scalable magnetic field gradients or employed directing magnetic fields with propulsive forces limited by the bacterial motor. Here, we present a magnetic torque-driven actuation scheme based on rotating magnetic fields to wirelessly control Magnetospirillum magneticum AMB-1 bearing versatile liposomal cargo. We observed a 4-fold increase in conjugate translocation across a model of the vascular endothelium and found that the primary mechanism driving this increased transport is torque-driven surface exploration at the cell interface. Using spheroids as a 3D tumor model, fluorescently labeled bacteria colonized their core regions with up to 21-fold higher signal in samples exposed to rotating magnetic fields. In addition to enhanced transport, we demonstrated the suitability of this magnetic stimulus for simultaneous actuation and inductive detection of AMB-1. Finally, we demonstrated that RMF significantly enhances AMB-1 tumor accumulation in vivo following systemic intravenous administration in mice. Our findings suggest that scalable magnetic torque-driven control strategies can be leveraged advantageously with biohybrid microrobots.


2022 ◽  
Vol 12 (1) ◽  
pp. 456
Author(s):  
Ruipeng Chen ◽  
David Folio ◽  
Antoine Ferreira

Magnetic microrobotics is a promising technology for improving minimally invasive surgery (MIS) with the ambition of enhancing patient care and comfort. The potential benefits include limited incisions, less hemorrhaging and postoperative pain, and faster recovery time. To achieve this, a key issue relies on the design of a proper electromagnetic actuation (EMA) setup which is based on the use of magnetic sources. The magnetic field and its gradient generated by the EMA platform is then used to induce magnetic torque and force for microrobot manipulations inside the human body. Like any control systems, the EMA system must be adapted to the given controlled microrobot and customized for the application. With great research efforts on magnetic manipulating of microrobots, the EMA systems are approaching commercial applications, and their configurations are becoming more suitable to be employed in real medical surgeries. However, most of the proposed designs have not followed any specific rule allowing to take into account the biomedical applications constraints. Through reviewing the different proposed EMA systems in the literature, their various specifications and configurations are comprehensively discussed and analyzed. This study focus on EMA platforms that use electromagnets. From this review and based on the biomedical application specifications, the appropriate EMA system can be determined efficiently.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dongjoon Lee ◽  
Dongwook Go ◽  
Hyeon-Jong Park ◽  
Wonmin Jeong ◽  
Hye-Won Ko ◽  
...  

AbstractThe orbital Hall effect describes the generation of the orbital current flowing in a perpendicular direction to an external electric field, analogous to the spin Hall effect. As the orbital current carries the angular momentum as the spin current does, injection of the orbital current into a ferromagnet can result in torque on the magnetization, which provides a way to detect the orbital Hall effect. With this motivation, we examine the current-induced spin-orbit torques in various ferromagnet/heavy metal bilayers by theory and experiment. Analysis of the magnetic torque reveals the presence of the contribution from the orbital Hall effect in the heavy metal, which competes with the contribution from the spin Hall effect. In particular, we find that the net torque in Ni/Ta bilayers is opposite in sign to the spin Hall theory prediction but instead consistent with the orbital Hall theory, which unambiguously confirms the orbital torque generated by the orbital Hall effect. Our finding opens a possibility of utilizing the orbital current for spintronic device applications, and it will invigorate researches on spin-orbit-coupled phenomena based on orbital engineering.


2021 ◽  
Vol 90 (11) ◽  
Author(s):  
Shinya Uji ◽  
Taichi Terashima ◽  
Shiori Sugiura ◽  
Satoshi Iguchi ◽  
Takahiko Sasaki ◽  
...  
Keyword(s):  

2021 ◽  
Vol 104 (10) ◽  
Author(s):  
C. Pellet-Mary ◽  
P. Huillery ◽  
M. Perdriat ◽  
G. Hétet

2021 ◽  
pp. 1-12
Author(s):  
Sun Xiao-feng ◽  
Qiao-bo Hu ◽  
Jingyu Qu ◽  
Wei Li ◽  
Ning Mao ◽  
...  

Summary The cleanliness of wellbore is a key factor in the drilling speed and quality of an oil field, especially in long horizontal sections of horizontal wells. Therefore, a hydraulic-magnetic rotary hole cleaning tool has been designed that does not rely on the rotary action of the drillpipe and could be used with a downhole motor to improve hole cleaning efficiency. However, the influence of magnet shape on the transmission of magnetic torque has remained unclear, such that the magnetic shaft transmission torque needed to be optimized to ensure efficient tool operation. In this study, magnetic field control equations were established in the region of the permanent magnet and air gap, and the magnetic flux distribution and magnetic torque generated between two magnetic axes in each field were calculated. Also, the influence of various magnetic field parameters on magnetic torque conduction of a strip magnet were compared and analyzed and then confirmed by comparison with experimental results. The results showed that the magnetic torque transmitted by strip magnets varied sinusoidally with magnetic axis deviation angles and that the highest torque was generated in the 12-pole model. However, the rate of increase in magnetic torque with magnet thickness was opposite to that of tile magnets, increasing with increasing magnet thickness. Magnetic torque variation with covered area was specific in the 6-pole model, showing a tendency of increasing and then decreasing. When magnet thickness was 12 mm and magnet coverage area in the effective cross section of the tool was 80%, the highest magnetic torque/unit volume of magnet was generated for achieving economic optimization. The results led to conclusions that, by solving the regional magnetic field, the magnetic torque change characteristics during movement of the magnetic drive mechanism of the hydraulic-magnetic rotary hole cleaning tool were simulated successfully and that these results could be used as an optimization analysis method for the magnetic drive mechanism of such tools.


2021 ◽  
Vol 104 (1) ◽  
Author(s):  
Narayan Poudel ◽  
Jason Jeffries ◽  
Krzysztof Gofryk

2021 ◽  
Vol 8 ◽  
Author(s):  
Peter Lloyd ◽  
Zaneta Koszowska ◽  
Michele Di Lecce ◽  
Onaizah Onaizah ◽  
James H. Chandler ◽  
...  

Soft continuum manipulators have the potential to replace traditional surgical catheters; offering greater dexterity with access to previously unfeasible locations for a wide range of interventions including neurological and cardiovascular. Magnetically actuated catheters are of particular interest due to their potential for miniaturization and remote control. Challenges around the operation of these catheters exist however, and one of these occurs when the angle between the actuating field and the local magnetization vector of the catheter exceeds 90°. In this arrangement, deformation generated by the resultant magnetic moment acts to increase magnetic torque, leading to potential instability. This phenomenon can cause unpredictable responses to actuation, particularly for soft, flexible materials. When coupled with the inherent challenges of sensing and localization inside living tissue, this behavior represents a barrier to progress. In this feasibility study we propose and investigate the use of helical fiber reinforcement within magnetically actuated soft continuum manipulators. Using numerical simulation to explore the design space, we optimize fiber parameters to enhance the ratio of torsional to bending stiffness. Through bespoke fabrication of an optimized helix design we validate a single, prototypical two-segment, 40 mm × 6 mm continuum manipulator demonstrating a reduction of 67% in unwanted twisting under actuation.


2021 ◽  
Vol 11 (11) ◽  
pp. 5292
Author(s):  
Eunsoo Jung ◽  
Jaekwang Nam ◽  
Wonseo Lee ◽  
Jongyul Kim ◽  
Gunhee Jang

We developed a crawling magnetic robot (CMR), which can stably navigate and perform biopsies remotely in tubular environments by controlling a magnetic field. The CMR is composed of a crawling part and a biopsy part. The crawling part allows the CMR to crawl forward and backward via an asymmetric friction force generated by an external precessional magnetic field. The biopsy part closes or opens the cover of a needle to use the biopsy needle selectively with the control of the external precessional magnetic field. The cover of the biopsy part prevents damage to the tubular environments because the biopsy needle is inside the cover while the CMR is navigating. We developed the design of the proposed CMR using magnetic torque constraints and a magnetic force constraint, and then we fabricated the CMR with three-dimensional printing technology. Finally, we conducted an experiment to measure the CMR’s puncturing force with a load cell and conducted an experiment in a Y-shaped watery glass tube with pseudo-tissue to verify the crawling motion, the uncovering and covering motion of the biopsy needle, and the CMR’s ability to extract tissue with the biopsy needle.


2021 ◽  
Author(s):  
Michael William Richard. Alger

This thesis describes the design and development of Ryerson University's first CubeSat (RyeSat) with a focus on power and attitude control subsystems. This satellite is intended to become the initial of a series of CubeSats built by Ryerson University to perform research in spacecraft control algorithms and actuators. RyeSat is built around a standard interface, which specifies both a data-bus and a switchable power supply system for non critical systems. To facilitate the development of this satellite a prototype power subsystem was created, programmed and tested. In addition to developing the system's architecture and power subsystem; analysis was preformed to size both reaction wheels and magnetic torquers. This analysis showed that a commercially available motor could be adapted to fulfill the attitude control requirements of a CubeSat and also showed that miniature magnetic torque rods would be more efficient that magnetic torque coils typically used on CubeSats. Finally, control laws for these actuators were designed and an adaptive nonlinear sliding mode controller for reaction wheels was applied to control the 3-axis attitude motion of RyeSat.


Sign in / Sign up

Export Citation Format

Share Document