Many Body Calculations in Atomic Physics

Author(s):  
Hugh P. Kelly
Keyword(s):  
2001 ◽  
Vol 15 (10n11) ◽  
pp. 1621-1640 ◽  
Author(s):  
D. M. STAMPER-KURN ◽  
A. P. CHIKKATUR ◽  
A. GÖRLITZ ◽  
S. GUPTA ◽  
S. INOUYE ◽  
...  

Gaseous Bose-Einstein condensates are a macroscopic condensed-matter system which can be understood from a microscopic, atomic basis. We present examples of how the optical tools of atomic physics can be used to probe properties of this system. In particular, we describe how stimulated light scattering can be used to measure the coherence length of a condensate, to measure its excitation spectrum, and to reveal the presence of pair excitations in the many-body condensate wavefunction.


Author(s):  
J. J. Boyle ◽  
M. S. Pindzola
Keyword(s):  

1990 ◽  
Vol 05 (19) ◽  
pp. 3787-3799
Author(s):  
ROLAND C. WARNER ◽  
G.C. JOSHI

We present a nonperturbative QCD contribution to interactions between separated coloursinglet hadrons, arising from the nontrivial topology of the QCD vacuum. We have calculated the effect of the structure of the vacuum (modelled here as a dilute gas of instantons) on hadron propagation, as a way of studying at least some nonperturbative effects. We find that a nonperturbative interaction arises which is familiar to us from our earlier studies of many-body potentials in multiquark systems. This interaction is distinct from those earlier perturbative QCD calculations which bear a direct analogy to the van der Waals interaction of atomic physics.


2007 ◽  
Vol 16 (12b) ◽  
pp. 2413-2419
Author(s):  
WOLFGANG KETTERLE

In my talk at the workshop on fundamental physics in space I described the nanokelvin revolution which has taken place in atomic physics. Nanokelvin temperatures have given us access to new physical phenomena including Bose–Einstein condensation, quantum reflection, and fermionic superfluidity in a gas. They also enabled new techniques of preparing and manipulating cold atoms. At low temperatures, only very weak forces are needed to control the motion of atoms. This gave rise to the development of miniaturized setups including atom chips. In Earth-based experiments, gravitational forces are dominant unless they are compensated by optical and magnetic forces. The following text describes the work which I used to illustrate the nanokelvin revolution in atomic physics. Strongest emphasis is given to superfluidity in fermionic atoms. This is a prime example of how ultracold atoms are used to create well-controlled strongly interacting systems and obtain new insight into many-body physics.


1977 ◽  
Vol 36 ◽  
pp. 191-215
Author(s):  
G.B. Rybicki

Observations of the shapes and intensities of spectral lines provide a bounty of information about the outer layers of the sun. In order to utilize this information, however, one is faced with a seemingly monumental task. The sun’s chromosphere and corona are extremely complex, and the underlying physical phenomena are far from being understood. Velocity fields, magnetic fields, Inhomogeneous structure, hydromagnetic phenomena – these are some of the complications that must be faced. Other uncertainties involve the atomic physics upon which all of the deductions depend.


1998 ◽  
Vol 94 (3) ◽  
pp. 417-433 ◽  
Author(s):  
MARTIN VAN DER HOEF ◽  
PAUL MADDEN

1968 ◽  
Vol 111 (1) ◽  
pp. 392-416 ◽  
Author(s):  
K DIETRICH ◽  
K HARA

Sign in / Sign up

Export Citation Format

Share Document