NEW FORMS OF QUANTUM MATTER NEAR ABSOLUTE ZERO TEMPERATURE

2007 ◽  
Vol 16 (12b) ◽  
pp. 2413-2419
Author(s):  
WOLFGANG KETTERLE

In my talk at the workshop on fundamental physics in space I described the nanokelvin revolution which has taken place in atomic physics. Nanokelvin temperatures have given us access to new physical phenomena including Bose–Einstein condensation, quantum reflection, and fermionic superfluidity in a gas. They also enabled new techniques of preparing and manipulating cold atoms. At low temperatures, only very weak forces are needed to control the motion of atoms. This gave rise to the development of miniaturized setups including atom chips. In Earth-based experiments, gravitational forces are dominant unless they are compensated by optical and magnetic forces. The following text describes the work which I used to illustrate the nanokelvin revolution in atomic physics. Strongest emphasis is given to superfluidity in fermionic atoms. This is a prime example of how ultracold atoms are used to create well-controlled strongly interacting systems and obtain new insight into many-body physics.

MRS Bulletin ◽  
1993 ◽  
Vol 18 (8) ◽  
pp. 38-43
Author(s):  
Kevin S. Bedell ◽  
Isaac F. Silvera ◽  
Neil S. Sullivan

The spin-polarized phases of the quantum fluids and solids, liquid 3He, solid 3He, and spin-aligned hydrogen have generated considerable excitement over the past fifteen years. The introduction of high magnetic fields (B ∼ 10–30 T) in conjunction with low temperatures (T ≲ 100 mK) has given rise to opportunities for exploring some of the new phases predicted for these materials. There is a broad range of physical phenomena that can be accessed in this regime of parameter space—unconventional superfluidity, unusual magnetic ordering, Bose-Einstein condensation and Kosterlitz-Thouless transitions, to name a few. This is most surprising since this plethora of complicated states of matter are present in some of the most uncomplicated materials. The rich variety of phases found in these materials are all examples of collective phenomena of quantum many-body systems, and they serve as prototypes for developing an understanding of magnetism and order/disorder processes in other systems, and for the design and characterization of new materials.


Author(s):  
Michael M. Scherer ◽  
Stefan Floerchinger ◽  
Holger Gies

We review the functional renormalization group (RG) approach to the Bardeen–Cooper–Schrieffer to Bose–Einstein condensation (BCS–BEC) crossover for an ultracold gas of fermionic atoms. Formulated in terms of a scale-dependent effective action, the functional RG interpolates continuously between the atomic or molecular microphysics and the macroscopic physics on large length scales. We concentrate on the discussion of the phase diagram as a function of the scattering length and the temperature, which is a paradigm example for the non-perturbative power of the functional RG. A systematic derivative expansion provides for both a description of the many-body physics and its expected universal features as well as an accurate account of the few-body physics and the associated BEC and BCS limits.


2019 ◽  
Vol 9 (3) ◽  
pp. 471 ◽  
Author(s):  
Hao Wu ◽  
Hongbo Zhu ◽  
Jianwei Zhang ◽  
Hangyu Peng ◽  
Li Qin ◽  
...  

A compact and highly efficient 670.8-nm semi-conductor master oscillator power amplifier (MOPA) system, with a unique optical design, is demonstrated. The MOPA system achieves a continuous-wave (CW) output power of 2.2 W, which is much higher than commercial products using semi-conductor devices. By comparing solid state lasers and dye lasers, higher wall-plug efficiency (WPE) of 20 % is achieved. Our developed laser system also achieves spectral line-width of 0.3 pm (200 MHz) and mode-hop free tuning range of 49 pm (32.6 GHz), which is very suitable for experiments of lithium atomic physics at several-watt power levels, such as Bose-Einstein condensation (BEC) and isotope absorption spectroscopy.


2001 ◽  
Vol 15 (10n11) ◽  
pp. 1621-1640 ◽  
Author(s):  
D. M. STAMPER-KURN ◽  
A. P. CHIKKATUR ◽  
A. GÖRLITZ ◽  
S. GUPTA ◽  
S. INOUYE ◽  
...  

Gaseous Bose-Einstein condensates are a macroscopic condensed-matter system which can be understood from a microscopic, atomic basis. We present examples of how the optical tools of atomic physics can be used to probe properties of this system. In particular, we describe how stimulated light scattering can be used to measure the coherence length of a condensate, to measure its excitation spectrum, and to reveal the presence of pair excitations in the many-body condensate wavefunction.


2018 ◽  
Vol 61 ◽  
pp. 55-67
Author(s):  
Anne de Bouard ◽  
Arnaud Debussche ◽  
Reika Fukuizumi ◽  
Romain Poncet

The modeling of cold atoms systems has known an increasing interest in the theoretical physics community, after the first experimental realizations of Bose Einstein condensates, some twenty years ago. We here review some analytical and numerical results concerning the influence of fluctua-tions, either arising from fluctuations of the confining parameters, or due to temperature effects, in the models describing the dynamics of such condensates.


2001 ◽  
Vol 15 (10n11) ◽  
pp. 1305-1311 ◽  
Author(s):  
C. E. CAMPBELL ◽  
J. W. CLARK ◽  
E. KROTSCHECK ◽  
L. P. PITAEVSKII

The Eugene Feenberg Medal is awarded to Anthony J. Leggett in recognition of his seminal contributions to Many-Body Physics, including the explanation of the remarkable properties of superfluid 3 He in the millikelvin regime, important results in Fermi-liquid theory applied to metals, fundamental new insights into macroscopic quantum coherence, elucidation of key aspects of high-temperature superconductivity, and pioneering studies of the implications of Bose-Einstein condensation in atomic systems.


Sign in / Sign up

Export Citation Format

Share Document