Effects of Acid Deposition Upon Outputs from Terrestrial to Aquatic Ecosystems

Author(s):  
Eville Gorham ◽  
William W. McFee
1985 ◽  
Vol 9 (4) ◽  
pp. 277-288 ◽  
Author(s):  
Charles P. Newcombe

Author(s):  
Kyle T. Thornham ◽  
R. Jay Stipes ◽  
Randolph L. Grayson

Dogwood anthracnose, caused by Discula destructiva (1), is another new catastrophic tree disease that has ravaged natural populations of the flowering dogwood (Cornus florida) in the Appalachians over the past 15 years, and the epidemic is prognosticated to continue (2). An estimated 9.5 million acres have been affected, primarily in the Appalachian Mountains, from VA southwards, alone, and an estimated 50% of all dogwoods in PA have been killed. Since acid deposition has been linked experimentally with disease induction, and since the disease incidence and severity are more pronounced at higher elevations where lower pH precipitation events occur, we investigated the effect of acidic foliar sprays on moiphologic changes in the foliar cuticle and trichomes (3), the initial sites of infection and foci of Discula sporulation.


Author(s):  
James S. Webber

INTRODUCTION“Acid rain” and “acid deposition” are terms no longer confined to the lexicon of atmospheric scientists and 1imnologists. Public awareness of and concern over this phenomenon, particularly as it affects acid-sensitive regions of North America, have increased dramatically in the last five years. Temperate ecosystems are suffering from decreased pH caused by acid deposition. Human health may be directly affected by respirable sulfates and by the increased solubility of toxic trace metals in acidified waters. Even man's monuments are deteriorating as airborne acids etch metal and stone features.Sulfates account for about two thirds of airborne acids with wet and dry deposition contributing equally to acids reaching surface waters or ground. The industrial Midwest is widely assumed to be the source of most sulfates reaching the acid-sensitive Northeast since S02 emitted as a byproduct of coal combustion in the Midwest dwarfs S02 emitted from all sources in the Northeast.


2011 ◽  
Vol 47 (6) ◽  
pp. 63-74
Author(s):  
O. P. Oksiyuk ◽  
O. A. Davydov
Keyword(s):  

2003 ◽  
Vol 39 (4) ◽  
pp. 16-25 ◽  
Author(s):  
A. V. Lyashenko ◽  
A. A. Protasov
Keyword(s):  

2021 ◽  
Vol 26 (1) ◽  
pp. 2269-2274
Author(s):  
IOAN PĂCEŞILĂ ◽  
EMILIA RADU

Phosphorus is one of the most important inorganic nutrients in aquatic ecosystems, the development and functioning of the phytoplankton communities being often correlated with the degree of availability in assimilable forms of this element. Alkaline phosphatase (AP) is an extracellular enzyme with nonspecific activity that catalyses the hydrolysis of a large variety of organic phosphate esters and release orthophosphates. During 2011-2013, AP Activity (APA) was assessed in the water column and sediments of several aquatic ecosystems from Danube Delta: Roșu Lake, Mândra Lake and their adjacent channels – Roșu-Împuțita and Roșu-Puiu. The intensity of APA widely fluctuated, ranging between 230-2578 nmol p-nitrophenol L-1h-1 in the water column and 2104-15631 nmol p-nitrophenol g-1h-1 in sediment. Along the entire period of the study, APA was the most intense in Roșu-Împuțita channel, for both water and sediment samples. Temporal dynamics revealed its highest values in summer for the water column and in autumn for sediment. Statistical analysis showed significant seasonal diferences of the APA dynamics in spring vs. summer and autumn for the water column, and any relevant diferences for sediment.


Sign in / Sign up

Export Citation Format

Share Document