extracellular enzymatic activities
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 14)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 63 (4) ◽  
pp. 62-65
Author(s):  
Nguyen Thuan Thien Truong ◽  
◽  
The Hao Nguyen ◽  
Cong Chinh Bui ◽  
Thi Thu Hoai Nguyen ◽  
...  

Vibrio parahaemolyticus is the main causative agent of acute hepatopancreatic necrosis disease (AHPND) in shrimp. This study aimed to investigate how shrimp extracts affect the growth and virulence of an AHPND-causative strain known as V. parahaemolyticus XN9. To this end, the bacteria was cultured in media containing 3% extract of each of five shrimp types and their growth kinetics were compared against that from bacteria grown in brain-heart infusion (BHI) media. Eight-hour growth curves were constructed using the plate-counting method. The activity of five extracellular enzymes that contribute to bacterial virulence was examined using the agar-based method. The results showed that V. parahaemolyticus XN9’s growth was strongly enhanced in all five shrimp extract media with the highest increase (25% greater than the BHI medium) found in the giant tiger prawn extract. Additionally, all the shrimp extracts boosted the extracellular enzymatic activity of V. parahaemolyticus XN9, although to different extents. In summary, the shrimp extracts, particularly that from the prawns, not only promoted the viability and growth of V. parahaemolyticus XN9 but also its extracellular enzymatic activities.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Gurmehar Kaur Grewal ◽  
Neelam Joshi ◽  
Yadhu Suneja

Abstract Background Spodoptera litura (Fab.) (Lepidoptera: Noctuidae) is a serious agricultural pest that infests many commercially important crops of Southeast Asian countries. Indiscriminate use of chemical pesticides has led to various health hazards as well as insecticide resistance. Entomopathogenic fungi (EPF) provide an important alternative as biological control agents. Metarhizium rileyi is an EPF with a specific host range for lepidopteran pests. The present study aimed to identify virulent M. rileyi isolate against S. litura larvae and analyse their extracellular cuticle-degrading enzyme activities. Results Three M. rileyi isolates viz M. rileyi NIPHM, M. rileyi MTCC 4254 and M. rileyi MTCC 10395 formulations were evaluated at different concentrations against 2nd instar larvae of S. litura. A maximum percent mortality of 63.33% was recorded in M. rileyi NIPHM (12 g/l), followed by M. rileyi MTCC 4254 (58.33%) at the same concentration, 10 days post-treatment. Maximum means of chitinase, protease and lipase activities (0.44, 1.58 and 2.95 U/ml, respectively) were recorded in the case of M. rileyi NIPHM. Correlation analysis was positive between enzyme activity and larval mortality. Conclusions Metarhizium rileyi NIPHM recorded the highest enzymatic activity and exhibited the maximum mortality rate against 2nd instar larvae of S. litura, suggesting the possible role of these enzymes in the pathogenicity of the fungus. Further knowledge in this regard may help in the development of enzyme-based screening methods for selecting virulent fungal isolates for the eco-friendly management of crop pests.


2021 ◽  
Vol 13 (7) ◽  
pp. 3768
Author(s):  
Zhiyuan Hu ◽  
Jiating Li ◽  
Kangwei Shi ◽  
Guangqian Ren ◽  
Zhicong Dai ◽  
...  

The rapid expansion of Canada goldenrod (Solidago canadensis L.) in China has drawn considerable attention as it may not only decrease vegetation diversity but also alter soil nutrient cycling in the affected ecosystems. Soil extracellular enzymes mediate nutrient cycling by catalyzing the organic matter decomposition; however, the mechanisms by which alien plant invasion may affect soil extracellular enzymes remain unclear. The objective of this study was to investigate the responses of soil extracellular enzyme activities and ecoenzymatic stoichiometry to S. canadensis invasion. Several extracellular enzymatic activities related to carbon, nitrogen, and phosphorus cycling were measured using a fluorometric method. Ecoenzymatic stoichiometry was used as a proxy of soil microbial metabolic limitations. S. canadensis invasion appeared to be associated with decreased activities of enzymes and with substantial conversions of microbial metabolic carbon and nitrogen limitations. The changes in the activities of extracellular enzymes and the limitations of microbial metabolism were correlated with the alterations in the nutrient availability and resource stoichiometry in the soil. These findings reveal that the alterations in soil available nutrients associated with S. canadensis invasion may regulate extracellular enzymatic activities and cause microbial metabolic limitations, suggesting that S. canadensis invasion considerably affects biogeochemical cycling processes.


2021 ◽  
Vol 26 (1) ◽  
pp. 2269-2274
Author(s):  
IOAN PĂCEŞILĂ ◽  
EMILIA RADU

Phosphorus is one of the most important inorganic nutrients in aquatic ecosystems, the development and functioning of the phytoplankton communities being often correlated with the degree of availability in assimilable forms of this element. Alkaline phosphatase (AP) is an extracellular enzyme with nonspecific activity that catalyses the hydrolysis of a large variety of organic phosphate esters and release orthophosphates. During 2011-2013, AP Activity (APA) was assessed in the water column and sediments of several aquatic ecosystems from Danube Delta: Roșu Lake, Mândra Lake and their adjacent channels – Roșu-Împuțita and Roșu-Puiu. The intensity of APA widely fluctuated, ranging between 230-2578 nmol p-nitrophenol L-1h-1 in the water column and 2104-15631 nmol p-nitrophenol g-1h-1 in sediment. Along the entire period of the study, APA was the most intense in Roșu-Împuțita channel, for both water and sediment samples. Temporal dynamics revealed its highest values in summer for the water column and in autumn for sediment. Statistical analysis showed significant seasonal diferences of the APA dynamics in spring vs. summer and autumn for the water column, and any relevant diferences for sediment.


2020 ◽  
Vol 6 (4) ◽  
pp. 335
Author(s):  
Vladimir Gorshkov ◽  
Elena Osipova ◽  
Mira Ponomareva ◽  
Sergey Ponomarev ◽  
Natalia Gogoleva ◽  
...  

Snow mold is a severe plant disease caused by psychrophilic or psychrotolerant fungi, of which Microdochium species are the most harmful. A clear understanding of Microdochium biology has many gaps; the pathocomplex and its dynamic are poorly characterized, virulence factors are unknown, genome sequences are not available, and the criteria of plant snow mold resistance are not elucidated. Our study aimed to identify comprehensive characteristics of a local community of snow mold-causing Microdochium species colonizing a particular crop culture. By using the next-generation sequencing (NGS) technique, we characterized fungal and bacterial communities of pink snow mold-affected winter rye (Secale cereale) plants within a given geographical location shortly after snowmelt. Twenty-one strains of M. nivale were isolated, classified on the basis of internal transcribed spacer 2 (ITS2) region, and characterized by morphology, synthesis of extracellular enzymes, and virulence. Several types of extracellular enzymatic activities, the level of which had no correlations with the degree of virulence, were revealed for Microdochium species for the first time. Our study shows that genetically and phenotypically diverse M. nivale strains simultaneously colonize winter rye plants within a common area, and each strain is likely to utilize its own, unique strategy to cause the disease using “a personal” pattern of extracellular enzymes.


Sign in / Sign up

Export Citation Format

Share Document