The Formation of Interstellar Molecules by Ion-Molecule Reactions

Author(s):  
A. Dalgarno
1980 ◽  
Vol 87 ◽  
pp. 323-324
Author(s):  
David Smith ◽  
Nigel G. Adams

The radiative association rate coefficients and their temperature dependences have been estimated for several likely interstellar ion-molecule reactions from laboratory collisional association rate data. They include the CH3+ + H2 and CH3+ + H2O reactions, which we suggest lead to CH4 and CH3OH respectively, and the critical association reaction C+ + H2.


1987 ◽  
Vol 120 ◽  
pp. 289-292
Author(s):  
L. M. Ziurys ◽  
B. E. Turner

Several new interstellar species have recently been detected in the molecular gas, including rotationally-excited CH, vibrationally-excited HCN, and a new molecular ion, HCNH+. These detections have raised some interesting questions concerning the relative importance of “shock” or “high temperature” chemistry vs. ion-molecule reactions in the synthesis of interstellar molecules in dense clouds.


1989 ◽  
Vol 135 ◽  
pp. 383-388
Author(s):  
J. F. Kerridge

Substantial enrichment of deuterium, D, in certain components of chondritic meteorites is interpreted as a record of isotopic fractionation during ion-molecule reactions at the very low temperatures characteristic of dense interstellar clouds. Whether those meteorites still contain the actual molecules that were synthesised in the presolar interstellar medium, or whether the interstellar material was recycled into a later generation of molecules within the early solar system is not known.


1978 ◽  
Vol 219 ◽  
pp. 458 ◽  
Author(s):  
G. H. Loew ◽  
D. S. Berkowitz ◽  
S. Chang

2020 ◽  
Author(s):  
Oisin Shiels ◽  
P. D. Kelly ◽  
Cameron C. Bright ◽  
Berwyck L. J. Poad ◽  
Stephen Blanksby ◽  
...  

<div> <div> <div> <p>A key step in gas-phase polycyclic aromatic hydrocarbon (PAH) formation involves the addition of acetylene (or other alkyne) to σ-type aromatic radicals, with successive additions yielding more complex PAHs. A similar process can happen for N- containing aromatics. In cold diffuse environments, such as the interstellar medium, rates of radical addition may be enhanced when the σ-type radical is charged. This paper investigates the gas-phase ion-molecule reactions of acetylene with nine aromatic distonic σ-type radical cations derived from pyridinium (Pyr), anilinium (Anl) and benzonitrilium (Bzn) ions. Three isomers are studied in each case (radical sites at the ortho, meta and para positions). Using a room temperature ion trap, second-order rate coefficients, product branching ratios and reaction efficiencies are reported. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document