Cauchy Problem for Some 2 × 2 Hyperbolic Systems of Pseudo-differential Equations with Nondiagonalisable Principal Part

Author(s):  
Todor Gramchev ◽  
Michael Ruzhansky
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Malkhaz Ashordia ◽  
Inga Gabisonia ◽  
Mzia Talakhadze

AbstractEffective sufficient conditions are given for the unique solvability of the Cauchy problem for linear systems of generalized ordinary differential equations with singularities.


2011 ◽  
Vol 18 (3) ◽  
pp. 577-586
Author(s):  
Zaza Sokhadze

Abstract The sufficient conditions of well-posedness of the weighted Cauchy problem for higher order linear functional differential equations with deviating arguments, whose coefficients have nonintegrable singularities at the initial point, are found.


1998 ◽  
Vol 5 (2) ◽  
pp. 121-138
Author(s):  
O. Jokhadze

Abstract Some structural properties as well as a general three-dimensional boundary value problem for normally hyperbolic systems of partial differential equations of first order are studied. A condition is given which enables one to reduce the system under consideration to a first-order system with the spliced principal part. It is shown that the initial problem is correct in a certain class of functions if some conditions are fulfilled.


2004 ◽  
Vol 4 (3) ◽  
Author(s):  
Franco Obersnel ◽  
Pierpaolo Omari

AbstractAn elementary approach, based on a systematic use of lower and upper solutions, is employed to detect the qualitative properties of solutions of first order scalar periodic ordinary differential equations. This study is carried out in the Carathéodory setting, avoiding any uniqueness assumption, in the future or in the past, for the Cauchy problem. Various classical and recent results are recovered and generalized.


Sign in / Sign up

Export Citation Format

Share Document