Schur Polynomials and $$\mathrm{GL}(n, \mathbb{C})$$

Author(s):  
Daniel Bump
Keyword(s):  
2002 ◽  
Vol 35 (1) ◽  
pp. 187-191 ◽  
Author(s):  
L.H. Keel ◽  
S.P. Bhattacharyya
Keyword(s):  

10.37236/217 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Natasha Rozhkovskaya

Analogues of classical combinatorial identities for elementary and homogeneous symmetric functions with coefficients in the Yangian are proved. As a corollary, similar relations are deduced for shifted Schur polynomials.


Author(s):  
Mattia Cafasso ◽  
◽  
Ann du Crest de Villeneuve ◽  
Di Yang ◽  
◽  
...  

2012 ◽  
Vol 11 (3) ◽  
pp. 467-499 ◽  
Author(s):  
Andreas Bernig

AbstractThe spaces of Sp(n)-, Sp(n) · U(1)- and Sp(n) · Sp(1)-invariant, translation-invariant, continuous convex valuations on the quaternionic vector space ℍn are studied. Combinatorial dimension formulae involving Young diagrams and Schur polynomials are proved.


Author(s):  
Ben Brubaker ◽  
Daniel Bump ◽  
Solomon Friedberg

This chapter introduces the Tokuyama's Theorem, first by writing the Weyl character formula and restating Schur polynomials, the values of the Whittaker function multiplied by the normalization constant. The λ‎-parts of Whittaker coefficients of Eisenstein series can be profitably regarded as a deformation of the numerator in the Weyl character formula. This leads to deformations of the Weyl character formula. Tokuyama gave such a deformation. It is an expression of ssubscript Greek small letter lamda(z) as a ratio of a numerator to a denominator. The denominator is a deformation of the Weyl denominator, and the numerator is a sum over Gelfand-Tsetlin patterns with top row λ‎ + ρ‎.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Leonardo Santilli ◽  
Miguel Tierz

Abstract We study several quiver Chern-Simons-matter theories on the three-sphere, combining the matrix model formulation with a systematic use of Mordell’s integral, computing partition functions and checking dualities. We also consider Wilson loops in ABJ(M) theories, distinguishing between typical (long) and atypical (short) representations and focusing on the former. Using the Berele-Regev factorization of supersymmetric Schur polynomials, we express the expectation value of the Wilson loops in terms of sums of observables of two factorized copies of U(N ) pure Chern-Simons theory on the sphere. Then, we use the Cauchy identity to study the partition functions of a number of quiver Chern-Simons-matter models and the result is interpreted as a perturbative expansion in the parameters tj = −e2πmj , where mj are the masses. Through the paper, we incorporate different generalizations, such as deformations by real masses and/or Fayet-Iliopoulos parameters, the consideration of a Romans mass in the gravity dual, and adjoint matter.


Sign in / Sign up

Export Citation Format

Share Document