Determination of Nucleotide Excision Repair Capacity of Liver Cells in Vivo and in Vitro by a Cell-Free Assay

Author(s):  
Lydie Sparfel ◽  
Sophie Langouët ◽  
Alain Fautrel ◽  
Bernard Salles ◽  
Audré Gouillouzo
2013 ◽  
Vol 288 (29) ◽  
pp. 20918-20926 ◽  
Author(s):  
Jinchuan Hu ◽  
Jun-Hyuk Choi ◽  
Shobhan Gaddameedhi ◽  
Michael G. Kemp ◽  
Joyce T. Reardon ◽  
...  

Nucleotide excision repair is the sole mechanism for removing the major UV photoproducts from genomic DNA in human cells. In vitro with human cell-free extract or purified excision repair factors, the damage is removed from naked DNA or nucleosomes in the form of 24- to 32-nucleotide-long oligomers (nominal 30-mer) by dual incisions. Whether the DNA damage is removed from chromatin in vivo in a similar manner and what the fate of the excised oligomer was has not been known previously. Here, we demonstrate that dual incisions occur in vivo identical to the in vitro reaction. Further, we show that transcription-coupled repair, which operates in the absence of the XPC protein, also generates the nominal 30-mer in UV-irradiated XP-C mutant cells. Finally, we report that the excised 30-mer is released from the chromatin in complex with the repair factors TFIIH and XPG. Taken together, our results show the congruence of in vivo and in vitro data on nucleotide excision repair in humans.


2007 ◽  
Vol 169 (2) ◽  
pp. 134
Author(s):  
N. Güngör ◽  
R.W.L. Godschalk ◽  
D. Pachen ◽  
A. Haegens ◽  
F.J. Van Schooten ◽  
...  

2012 ◽  
Vol 199 (2) ◽  
pp. 235-249 ◽  
Author(s):  
Alex Pines ◽  
Mischa G. Vrouwe ◽  
Jurgen A. Marteijn ◽  
Dimitris Typas ◽  
Martijn S. Luijsterburg ◽  
...  

The WD40-repeat protein DDB2 is essential for efficient recognition and subsequent removal of ultraviolet (UV)-induced DNA lesions by nucleotide excision repair (NER). However, how DDB2 promotes NER in chromatin is poorly understood. Here, we identify poly(ADP-ribose) polymerase 1 (PARP1) as a novel DDB2-associated factor. We demonstrate that DDB2 facilitated poly(ADP-ribosyl)ation of UV-damaged chromatin through the activity of PARP1, resulting in the recruitment of the chromatin-remodeling enzyme ALC1. Depletion of ALC1 rendered cells sensitive to UV and impaired repair of UV-induced DNA lesions. Additionally, DDB2 itself was targeted by poly(ADP-ribosyl)ation, resulting in increased protein stability and a prolonged chromatin retention time. Our in vitro and in vivo data support a model in which poly(ADP-ribosyl)ation of DDB2 suppresses DDB2 ubiquitylation and outline a molecular mechanism for PARP1-mediated regulation of NER through DDB2 stabilization and recruitment of the chromatin remodeler ALC1.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Kelley N. Newton ◽  
Charmain T. Courcelle ◽  
Justin Courcelle

UvrD is a DNA helicase that participates in nucleotide excision repair and several replication-associated processes, including methyl-directed mismatch repair and recombination. UvrD is capable of displacing oligonucleotides from synthetic forked DNA structuresin vitroand is essential for viability in the absence of Rep, a helicase associated with processing replication forks. These observations have led others to propose that UvrD may promote fork regression and facilitate resetting of the replication fork following arrest. However, the molecular activity of UvrD at replication forksin vivohas not been directly examined. In this study, we characterized the role UvrD has in processing and restoring replication forks following arrest by UV-induced DNA damage. We show that UvrD is required for DNA synthesis to recover. However, in the absence of UvrD, the displacement and partial degradation of the nascent DNA at the arrested fork occur normally. In addition, damage-induced replication intermediates persist and accumulate inuvrDmutants in a manner that is similar to that observed in other nucleotide excision repair mutants. These data indicate that, following arrest by DNA damage, UvrD is not required to catalyze fork regressionin vivoand suggest that the failure ofuvrDmutants to restore DNA synthesis following UV-induced arrest relates to its role in nucleotide excision repair.


2017 ◽  
Vol 38 (10) ◽  
pp. 976-985 ◽  
Author(s):  
Chunhua Han ◽  
Ran Zhao ◽  
John Kroger ◽  
Jinshan He ◽  
Gulzar Wani ◽  
...  

Abstract Subunit 2 of DNA damage-binding protein complex (DDB2) is an early sensor of nucleotide excision repair (NER) pathway for eliminating DNA damage induced by UV radiation (UVR) and cisplatin treatments of mammalian cells. DDB2 is modified by ubiquitin and poly(ADP-ribose) (PAR) in response to UVR, and these modifications play a crucial role in regulating NER. Here, using immuno-analysis of irradiated cell extracts, we have identified multiple post-irradiation modifications of DDB2 protein. Interestingly, although the DNA lesions induced by both UVR and cisplatin are corrected by NER, only the UV irradiation, but not the cisplatin treatment, induces any discernable DDB2 modifications. We, for the first time, show that the appearance of UVR-induced DDB2 modifications depend on the binding of DDB2 to the damaged chromatin and the participation of functionally active 26S proteasome. The in vitro and in vivo analysis revealed that SUMO-1 conjugations comprise a significant portion of these UVR-induced DDB2 modifications. Mapping of SUMO-modified sites demonstrated that UVR-induced SUMOylation occurs on Lys-309 residue of DDB2 protein. Mutation of Lys-309 to Arg-309 diminished the DDB2 SUMOylation observable both in vitro and in vivo. Moreover, K309R mutated DDB2 lost its function of recruiting XPC to the DNA damage sites, as well as the ability to repair cyclobutane pyrimidine dimers following cellular UV irradiation. Taken together, our results indicate that DDB2 is modified by SUMOylation upon UV irradiation, and this post-translational modification plays an important role in the initial recognition and processing of UVR-induced DNA damage occurring within the context of chromatin.


2008 ◽  
Vol 179 (4S) ◽  
pp. 373-373
Author(s):  
Ingo Kausch ◽  
Andreas Albers ◽  
Beate Thode ◽  
Christian Doehn ◽  
Dieter Jocham

1999 ◽  
Vol 10 (7) ◽  
pp. 2119-2129 ◽  
Author(s):  
Marcus P. Cooper ◽  
Adayabalam S. Balajee ◽  
Vilhelm A. Bohr

The protein p21Cip1, Waf1, Sdi1 is a potent inhibitor of cyclin-dependent kinases (CDKs). p21 can also block DNA replication through its interaction with the proliferating cell nuclear antigen (PCNA), which is an auxiliary factor for polymerase δ. PCNA is also implicated in the repair resynthesis step of nucleotide excision repair (NER). Previous studies have yielded contradictory results on whether p21 regulates NER through its interaction with PCNA. Resolution of this controversy is of interest because it would help understand how DNA repair and replication are regulated. Hence, we have investigated the effect of p21 on NER both in vitro and in vivo using purified fragments of p21 containing either the CDK-binding domain (N terminus) or the PCNA binding domain (C terminus) of the protein. In the in vitro studies, DNA repair synthesis was measured in extracts from normal human fibroblasts using plasmids damaged by UV irradiation. In the in vivo studies, we used intact and permeabilized cells. The results show that the C terminus of the p21 protein inhibits NER both in vitro and in vivo. These are the first in vivo studies in which this question has been examined, and we demonstrate that inhibition of NER by p21 is not merely an artificial in vitro effect. A 50% inhibition of in vitro NER occurred at a 50:1 molar ratio of p21 C-terminus fragment to PCNA monomer. p21 differentially regulates DNA repair and replication, with repair being much less sensitive to inhibition than replication. Our in vivo results suggest that the inhibition occurs at the resynthesis step of the repair process. It also appears that preassembly of PCNA at repair sites mitigates the inhibitory effect of p21. We further demonstrate that the inhibition of DNA repair is mediated via binding of p21 to PCNA. The N terminus of p21 had no effect on DNA repair, and the inhibition of DNA repair by the C terminus of p21 was relieved by the addition of purified PCNA protein.


1995 ◽  
Vol 15 (10) ◽  
pp. 5396-5402 ◽  
Author(s):  
L Li ◽  
X Lu ◽  
C A Peterson ◽  
R J Legerski

Replication protein A (RPA) is required for simian virus 40-directed DNA replication in vitro and for nucleotide excision repair (NER). Here we report that RPA and the human repair protein XPA specifically interact both in vitro and in vivo. Mapping of the RPA-interactive domains in XPA revealed that both of the largest subunits of RPA, RPA-70 and RPA-34, interact with XPA at distinct sites. A domain involved in mediating the interaction with RPA-70 was located between XPA residues 153 and 176. Deletion of highly conserved motifs within this region identified two mutants that were deficient in binding RPA in vitro and highly defective in NER both in vitro and in vivo. A second domain mediating the interaction with RPA-34 was identified within the first 58 residues in XPA. Deletion of this region, however, only moderately affects the complementing activity of XPA in vivo. Finally, the XPA-RPA complex is shown to have a greater affinity for damaged DNA than XPA alone. Taken together, these results indicate that the interaction between XPA and RPA is required for NER but that only the interaction with RPA-70 is essential.


1995 ◽  
Vol 15 (4) ◽  
pp. 1993-1998 ◽  
Author(s):  
L Li ◽  
C A Peterson ◽  
X Lu ◽  
R J Legerski

The human repair proteins XPA and ERCC1 have been shown to be absolutely required for the incision step of nucleotide excision repair, and recently we identified an interaction between these two proteins both in vivo and in vitro (L. Li, S. J. Elledge, C. A. Peterson, E. S. Bales, and R. J. Legerski, Proc. Natl. Acad. Sci. USA 91:5012-5016, 1994). In this report, we demonstrate the functional relevance of this interaction. The ERCC1-binding domain on XPA was previously mapped to a region containing two highly conserved XPA sequences, Gly-72 to Phe-75 and Glu-78 to Glu-84, which are termed the G and E motifs, respectively. Site-specific mutagenesis was used to independently delete these motifs and create two XPA mutants referred to as delta G and delta E. In vitro, the binding of ERCC1 to delta E was reduced by approximately 70%, and binding to delta G was undetectable; furthermore, both mutants failed to complement XPA cell extracts in an in vitro DNA repair synthesis assay. In vivo, the delta E mutant exhibited an intermediate level of complementation of XPA cells and the delta G mutant exhibited little or no complementation. In addition, the delta G mutant inhibited repair synthesis in wild-type cell extracts, indicating that it is a dominant negative mutant. The delta E and delta G mutations, however, did not affect preferential binding of XPA to damaged DNA. These results suggest that the association between XPA and ERCC1 is a required step in the nucleotide excision repair pathway and that the probable role of the interaction is to recruit the ERCC1 incision complex to the damage site. Finally, the affinity of the XPA-ERCC1 complex was found to increase as a function of salt concentration, indicating a hydrophobic interaction; the half-life of the complex was determined to be approximately 90 min.


Sign in / Sign up

Export Citation Format

Share Document