On the Trail of Quark-Gluon Plasma: Strange Antibaryons in Nuclear Collisions

Author(s):  
Johann Rafelski
2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Subhash Singha ◽  
Prashanth Shanmuganathan ◽  
Declan Keane

We review topics related to the first moment of azimuthal anisotropy (v1), commonly known as directed flow, focusing on both charged particles and identified particles from heavy-ion collisions. Beam energies from the highest available, at the CERN LHC, down to projectile kinetic energies per nucleon of a few GeV per nucleon, as studied in experiments at the Brookhaven AGS, fall within our scope. We focus on experimental measurements and on theoretical work where direct comparisons with experiment have been emphasized. The physics addressed or potentially addressed by this review topic includes the study of Quark Gluon Plasma and, more generally, investigation of the Quantum Chromodynamics phase diagram and the equation of state describing the accessible phases.


2013 ◽  
Vol 22 (01) ◽  
pp. 1350004 ◽  
Author(s):  
SUKANYA MITRA ◽  
PAYAL MOHANTY ◽  
SOURAV SARKAR ◽  
JAN-E ALAM

The effects of viscosity on the space-time evolution of quark gluon plasma produced in nuclear collisions at relativistic heavy ion collider energies have been studied. The entropy generated due to the viscous motion of the fluid has been taken into account in constraining the initial temperature by the final multiplicity (measured at the freeze-out point). The viscous effects on the photon spectra has been introduced consistently through the evolution dynamics and phase space factors of all the participating partons/hadrons in the production process. In contrast to some of the recent calculations the present work includes the contribution from the hadronic phase. A small change in the transverse momentum (pT) distribution of photons is observed due to viscous effects.


Author(s):  
Minoru Biyajima ◽  
Hideto Enyo ◽  
Teiji Kunihiro ◽  
Osamu Miyamura

Sign in / Sign up

Export Citation Format

Share Document