Quantum Groups in Lattice Models

Author(s):  
V. Pasquier
1989 ◽  
Vol 04 (10) ◽  
pp. 2371-2463 ◽  
Author(s):  
H.J. De VEGA

The Yang-Baxter-Zamolodchikov-Faddeev (YBZF) algebras and their many applications are the subject of this reivew. I start by the solvable lattice statistical models constructed from YBZF algebras. All two-dimensional integrable vertex models follow in this way and are solvable via Bethe Ansatz (BA) and their generalizations. The six-vertex model solution and its q(2q−1) vertex generalization including its nested BA construction are exposed. YBZF algebras and their associated physical models are classified in terms of simple Lie algebras. It is shown how these lattice models yield both solvable massive quantum field theories (QFT) and conformal models in appropriated scaling (continuous) limits within the lattice light-cone approach. The method of finite-size calculations from the BA is described as well as its applications to derive the conformal properties of integrable lattice models. It is conjectured that all integrable QFT and conformal models follow in a scaling limit from these YBZF algebras. A discussion on braid and quantum groups concludes this review.


1990 ◽  
Vol 04 (05) ◽  
pp. 735-801 ◽  
Author(s):  
H.J. DE VEGA

The Yang-Baxter algebras (YBA) are introduced in a general framework stressing their power to exactly solve the lattice models associated to them. The algebraic Bethe Ansatz is developed as an eigenvector construction based on the YBA. The six-vertex model solution is given explicitly. The generalization of YB algebras to face language is considered. The algebraic BA for the SOS model of Andrews, Baxter and Forrester is described using these face YB algebras. It is explained how these lattice models yield both solvable massive QFT and conformal models in appropiated scaling (continuous) limits within the lattice light-cone approach. This approach permit to define and solve rigorously massive QFT as an appropiate continuum limit of gapless vertex models. The deep links between the YBA and Lie algebras are analyzed including the quantum groups that underly the trigonometric/hyperbolic YBA. Braid and quantum groups are derived from trigonometric/hyperbolic YBA in the limit of infinite spectral parameter. To conclude, some recent developments in the domain of integrable theories are summarized.


1992 ◽  
Vol 25 (4) ◽  
pp. 1019-1019 ◽  
Author(s):  
M T Batchelor ◽  
A Kuniba

1991 ◽  
Vol 24 (11) ◽  
pp. 2599-2614 ◽  
Author(s):  
M T Batchelor ◽  
A Kuniba

1988 ◽  
Vol 295 (4) ◽  
pp. 491-510 ◽  
Author(s):  
V. Pasquier

Author(s):  
Jaan Oitmaa ◽  
Chris Hamer ◽  
Weihong Zheng

2010 ◽  
Vol 258 (10) ◽  
pp. 3362-3375 ◽  
Author(s):  
Kenny De Commer

2020 ◽  
Vol 2020 (769) ◽  
pp. 87-119
Author(s):  
Sabin Cautis ◽  
Aaron D. Lauda ◽  
Joshua Sussan

AbstractRickard complexes in the context of categorified quantum groups can be used to construct braid group actions. We define and study certain natural deformations of these complexes which we call curved Rickard complexes. One application is to obtain deformations of link homologies which generalize those of Batson–Seed [3] [J. Batson and C. Seed, A link-splitting spectral sequence in Khovanov homology, Duke Math. J. 164 2015, 5, 801–841] and Gorsky–Hogancamp [E. Gorsky and M. Hogancamp, Hilbert schemes and y-ification of Khovanov–Rozansky homology, preprint 2017] to arbitrary representations/partitions. Another is to relate the deformed homology defined algebro-geometrically in [S. Cautis and J. Kamnitzer, Knot homology via derived categories of coherent sheaves IV, colored links, Quantum Topol. 8 2017, 2, 381–411] to categorified quantum groups (this was the original motivation for this paper).


Sign in / Sign up

Export Citation Format

Share Document