New Derivation of Conservation Laws for Optimal Control Problem and its Application to Economic Growth Models

Author(s):  
Fumitake Mimura ◽  
Fumiyo Fujiwara ◽  
Takayuki Nôno
2014 ◽  
Vol 11 (03) ◽  
pp. 477-491 ◽  
Author(s):  
Adimurthi ◽  
Shyam Sundar Ghoshal ◽  
G. D. Veerappa Gowda

The optimal control problem for Burgers equation was first considered by Castro, Palacios and Zuazua. They proved the existence of a solution and proposed a numerical scheme to capture an optimal solution via the method of "alternate decent direction". In this paper, we introduce a new strategy for the optimal control problem for scalar conservation laws with convex flux. We propose a new cost function and by the Lax–Oleinik explicit formula for entropy solutions, the nonlinear problem is converted to a linear problem. Exploiting this property, we prove the existence of an optimal solution and, by a backward construction, we give an algorithm to capture an optimal solution.


Author(s):  
Alexander Leonidovich Bagno ◽  
Alexander Mikhailovich Tarasyev

Asymptotic behavior of the value function is studied in an infinite horizon optimal control problem with an unlimited integrand index discounted in the objective functional. Optimal control problems of such type are related to analysis of trends of trajectories in models of economic growth. Stability properties of the value function are expressed in the infinitesimal form. Such representation implies that the value function coincides with the generalized minimax solution of the Hamilton–Jacobi equation. It is shown that that the boundary condition for the value function is substituted by the property of the sublinear asymptotic behavior. An example is given to illustrate construction of the value function as the generalized minimax solution in economic growth models.


2020 ◽  
Vol 7 (3) ◽  
pp. 11-22
Author(s):  
VALERY ANDREEV ◽  
◽  
ALEXANDER POPOV

A reduced model has been developed to describe the time evolution of a discharge in an iron core tokamak, taking into account the nonlinear behavior of the ferromagnetic during the discharge. The calculation of the discharge scenario and program regime in the tokamak is formulated as an inverse problem - the optimal control problem. The methods for solving the problem are compared and the analysis of the correctness and stability of the control problem is carried out. A model of “quasi-optimal” control is proposed, which allows one to take into account real power sources. The discharge scenarios are calculated for the T-15 tokamak with an iron core.


Sign in / Sign up

Export Citation Format

Share Document