Functional Equation of the Zeta Function, Hecke’s Proof

Author(s):  
Serge Lang
1988 ◽  
Vol 30 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Hugh L. Montgomery

Let be a positive definite binary quadratic form with real coefficients and discriminant b2 − 4ac = −1.Among such forms, let . The Epstein zeta function of f is denned to beRankin [7], Cassels [1], Ennola [5], and Diananda [4] between them proved that for every real s > 0,We prove a corresponding result for theta functions. For real α > 0, letThis function satisfies the functional equation(This may be proved by using the formula (4) below, and then twice applying the identity (8).)


2010 ◽  
Vol 198 ◽  
pp. 47-75 ◽  
Author(s):  
J. J. Moyano-Fernández ◽  
W. A. Zúňiga-Galindo

AbstractLet X be a complete, geometrically irreducible, singular, algebraic curve defined over a field of characteristic p big enough. Given a local ring Op,x at a rational singular point P of X, we attached a universal zeta function which is a rational function and admits a functional equation if Op,x is Gorenstein. This universal zeta function specializes to other known zeta functions and Poincaré series attached to singular points of algebraic curves. In particular, for the local ring attached to a complex analytic function in two variables, our universal zeta function specializes to the generalized Poincaré series introduced by Campillo, Delgado, and Gusein-Zade.


2020 ◽  
Vol 31 (10) ◽  
pp. 2050082
Author(s):  
Hau-Wen Huang

Let [Formula: see text] denote a connected [Formula: see text]-regular undirected graph of finite order [Formula: see text]. The graph [Formula: see text] is called Ramanujan whenever [Formula: see text] for all nontrivial eigenvalues [Formula: see text] of [Formula: see text]. We consider the variant [Formula: see text] of the Ihara Zeta function [Formula: see text] of [Formula: see text] defined by [Formula: see text] The function [Formula: see text] satisfies the functional equation [Formula: see text]. Let [Formula: see text] denote the number sequence given by [Formula: see text] In this paper, we establish the equivalence of the following statements: (i) [Formula: see text] is Ramanujan; (ii) [Formula: see text] for all [Formula: see text]; (iii) [Formula: see text] for infinitely many even [Formula: see text]. Furthermore, we derive the Hasse–Weil bound for the Ramanujan graphs.


Author(s):  
Weicun Zhang

The completed zeta function $\xi(s)$ is expanded in MacLaurin series (infinite polynomial), which can be further expressed as infinite product (Hadamard product) by its complex conjugate zeros $\alpha_i\pm j\beta_i, \beta_i\neq 0, i\in \mathbb{N}$. Then, according to the functional equation $\xi(s)=\xi(1-s)$, we have $$\xi(0)\prod_{i=1}^{\infty}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}\Big{(}1+\frac{(s-\alpha_i)^2}{\beta_i^2}\Big{)} =\xi(0)\prod_{i=1}^{\infty}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}\Big{(}1+\frac{(1-s-\alpha_i)^2}{\beta_i^2}\Big{)}$$ which, by Lemma 3 and Corollary 1, is equivalent to $$(s-\alpha_i)^2 = (1-s-\alpha_i)^2, i \in \mathbb{N}$$ with solution $\alpha_i= \frac{1}{2}, i\in \mathbb{N}$. Thus, a proof of the Riemann Hypothesis can be achieved.


Author(s):  
Weicun Zhang

The completed zeta function $\xi(s)$ is expanded in MacLaurin series (infinite polynomial), which can be further expressed as infinite product (Hadamard product) of quadratic factors by its complex conjugate zeros $\alpha_i\pm j\beta_i, \beta_i\neq 0, i\in \mathbb{N}$ ($\mathbb{N}$ is the set of natural numbers, from $1$ to infinity). Then, according to the functional equation $\xi(s)=\xi(1-s)$, we have $$\xi(0)\prod_{i=1}^{\infty}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}\Big{(}1+\frac{(s-\alpha_i)^2}{\beta_i^2}\Big{)} =\xi(0)\prod_{i=1}^{\infty}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}\Big{(}1+\frac{(1-s-\alpha_i)^2}{\beta_i^2}\Big{)}$$ which, by Lemma 3 and Corollary 1, is equivalent to $$(s-\alpha_i)^2 = (1-s-\alpha_i)^2, i \in \mathbb{N}$$ with solution $\alpha_i= \frac{1}{2}, i\in \mathbb{N}$ (another solution $s=\frac{1}{2}$ is invalid due to obvious contradiction). Thus, a proof of the Riemann Hypothesis is achieved.


1967 ◽  
Vol 15 (4) ◽  
pp. 309-313 ◽  
Author(s):  
Bruce C. Berndt

The generalised zeta-function ζ(s, α) is defined bywhere α>0 and Res>l. Clearly, ζ(s, 1)=, where ζ(s) denotes the Riemann zeta-function. In this paper we consider a general class of Dirichlet series satisfying a functional equation similar to that of ζ(s). If ø(s) is such a series, we analogously define ø(s, α). We shall derive a representation for ø(s, α) which will be valid in the entire complex s-plane. From this representation we determine some simple properties of ø(s, α).


2010 ◽  
Vol 198 ◽  
pp. 47-75
Author(s):  
J. J. Moyano-Fernández ◽  
W. A. Zúňiga-Galindo

AbstractLetXbe a complete, geometrically irreducible, singular, algebraic curve defined over a field of characteristicpbig enough. Given a local ringOp,x at a rational singular pointPofX, we attached a universal zeta function which is a rational function and admits a functional equation ifOp,x is Gorenstein. This universal zeta function specializes to other known zeta functions and Poincaré series attached to singular points of algebraic curves. In particular, for the local ring attached to a complex analytic function in two variables, our universal zeta function specializes to the generalized Poincaré series introduced by Campillo, Delgado, and Gusein-Zade.


Sign in / Sign up

Export Citation Format

Share Document